login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(n) = A001222(n) + A061395(n) - A324861(n).
4

%I #7 Mar 27 2019 18:56:56

%S 0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,

%T 1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

%U 1,1,1,1,1,1,2,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1

%N a(n) = A001222(n) + A061395(n) - A324861(n).

%C Records 0, 1, 2, 6, 7, 10, 14, etc., occur at n = 1, 2, 50, 125, 243, 1729, 8192, etc.

%H Antti Karttunen, <a href="/A324872/b324872.txt">Table of n, a(n) for n = 1..10000</a> (based on Hans Havermann's factorization of A156552)

%H <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>

%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>

%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>

%F a(n) = A001222(n) + A061395(n) - A324861(n).

%F a(n) = 1 + A252464(n) - A324861(n).

%F a(p) = 1 for all primes p.

%o (PARI)

%o A061395(n) = if(1==n, 0, primepi(vecmax(factor(n)[, 1])));

%o A324861(n) = #binary(A324876(n)); \\ Needs also code from A324876.

%o A324872(n) = (bigomega(n)+A061395(n)-A324861(n));

%Y Cf. A001222, A061395, A252464, A324861, A324870, A324876.

%K nonn

%O 1,50

%A _Antti Karttunen_, Mar 21 2019