Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #6 Mar 17 2019 21:08:59
%S 0,1,1,2,1,3,1,2,0,1,1,2,1,5,2,2,1,3,1,2,-1,2,1,2,-3,2,3,2,1,2,1,2,2,
%T 2,-2,2,1,9,-3,2,1,3,1,2,4,2,1,2,-3,1,4,2,1,3,-1,2,-3,3,1,2,1,2,5,2,2,
%U 2,1,2,2,4,1,2,1,2,2,2,-2,2,1,2,-3,2,1,2,-4,2,-3,2,1,3,-1,2,2,2,-3,2,1,1,-3,2,1,3,1,2,-3
%N a(n) = sign(A323244(n))*A001511(A323244(n)), with a(n) = 0 if A323244(n) = 0.
%H Antti Karttunen, <a href="/A324817/b324817.txt">Table of n, a(n) for n = 1..10000</a> (based on Hans Havermann's factorization of A156552)
%H <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>
%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>
%F If A323244(n) = 0, then a(n) = 0, otherwise a(n) = sign(A323244(n)) * A001511(A323244(n)).
%F a(p) = 1 for all primes p.
%o (PARI)
%o A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552 by _David A. Corneth_
%o A323244(n) = ((2*A156552(n))-A323243(n)); \\ Needs also code from A323243.
%o A001511ext(n) = if(!n,n,sign(n)*(1+valuation(n,2))); \\ Like A001511 but gives 0 for 0 and -A001511(-n) for negative numbers.
%o A324817(n) = A001511ext(A323244(n));
%Y Cf. A001511, A156552, A323243, A323244, A324724, A324725, A324731, A324732.
%K sign
%O 1,4
%A _Antti Karttunen_, Mar 17 2019