The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A324616 G.f.: Sum_{n>=0} (2^n + q)^n * x^n / (1 + 2^n*q*x)^(n+1), where q = sqrt(2). 0

%I

%S 1,2,12,416,59528,32265472,67721176080,560073696753664,

%T 18415259721236185120,2416524076310084112760832,

%U 1267433026502703401885538910272,2658316556785488750691847530918313984,22300394287673273128207029214065419602624640,748285359413327989637421924090871932680071306805248,100433491577808064702053548387551557378968553711590149456128

%N G.f.: Sum_{n>=0} (2^n + q)^n * x^n / (1 + 2^n*q*x)^(n+1), where q = sqrt(2).

%C Note that the generating function, which involves an irrational constant, expands as a power series in x that consists solely of integer coefficients.

%F G.f.: Sum_{n>=0} (2^n + q)^n * x^n / (1 + 2^n*q*x)^(n+1), where q = sqrt(2).

%F G.f.: Sum_{n>=0} (2^n - q)^n * x^n / (1 - 2^n**qx)^(n+1), where q = sqrt(2).

%F a(n) = Sum_{k=0..n} binomial(n,k) * (2^n - 2^k*q)^(n-k) * q^k, where q = sqrt(2).

%F a(n) = Sum_{k=0..n} binomial(n,k) * (2^n + 2^k*q)^(n-k) * (-q)^k, where q = sqrt(2).

%e G.f.: A(x) = 1 + 2*x + 12*x^2 + 416*x^3 + 59528*x^4 + 32265472*x^5 + 67721176080*x^6 + 560073696753664*x^7 + 18415259721236185120*x^8 + ...

%e Let q = sqrt(2), then

%e A(x) = 1/(1+q*x) + (2 + q)*x/(1 + 2*q*x)^2 + (2^2 + q)^2*x^2/(1 + 2^2*q*x)^3 + (2^3 + q)^3*x^3/(1 + 2^3*q*x)^3 + (2^4 + q)^4*x^4/(1 + 2^4*q*x)^5 + (2^5 + q)^5*x^5/(1 + 2^5*q*x)^6 + (2^6 + q)^6*x^6/(1 + 2^6*q*x)^7 + ...

%e and also

%e A(x) = 1/(1-q*x) + (2 - q)*x/(1 - 2*q*x)^2 + (2^2 - q)^2*x^2/(1 - 2^2*q*x)^3 + (2^3 - q)^3*x^3/(1 - 2^3*q*x)^3 + (2^4 - q)^4*x^4/(1 - 2^4*q*x)^5 + (2^5 - q)^5*x^5/(1 - 2^5*q*x)^6 + (2^6 - q)^6*x^6/(1 - 2^6*q*x)^7 + ...

%o (PARI) {a(n) = my(q=sqrt(2), A = sum(m=0, n+1, (2^m + q)^m*x^m/(1 + 2^m*q*x +x*O(x^n) )^(m+1) )); round( polcoeff(A, n) )}

%o for(n=0, 20, print1(a(n), ", "))

%o (PARI) {a(n) = my(q=sqrt(2), A = sum(m=0, n+1, (2^m - q)^m*x^m/(1 - 2^m*q*x +x*O(x^n) )^(m+1) )); round( polcoeff(A, n) )}

%o for(n=0, 20, print1(a(n), ", "))

%o (PARI) {a(n) = my(q=sqrt(2)); round( sum(k=0, n, binomial(n, k) * (2^n - 2^k*q)^(n-k) * q^k ) )}

%o for(n=0, 20, print1(a(n), ", "))

%o (PARI) {a(n) = my(q=sqrt(2)); round( sum(k=0, n, binomial(n, k) * (2^n + 2^k*q)^(n-k) * (-q)^k ) )}

%o for(n=0, 20, print1(a(n), ", "))

%Y Cf. A324306.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Mar 13 2019

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 21 03:58 EST 2022. Contains 350473 sequences. (Running on oeis4.)