login
Total number of occurrences of 4 in the (signed) displacement sets of all permutations of [n+4] divided by 4!.
3

%I #11 May 03 2021 10:09:36

%S 0,1,9,76,679,6576,69299,792926,9812079,130741156,1867777339,

%T 28494131106,462487232519,7959671021576,144813873037539,

%U 2777366346993766,56009230972732639,1184896664408025036,26240470547134420619,607133649024919944266,14649976322598313989879

%N Total number of occurrences of 4 in the (signed) displacement sets of all permutations of [n+4] divided by 4!.

%H Alois P. Heinz, <a href="/A324354/b324354.txt">Table of n, a(n) for n = 0..446</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Permutation">Permutation</a>

%F E.g.f.: (1-exp(-x))/(1-x)^5.

%F a(n) = -1/4! * Sum_{j=1..n} (-1)^j * binomial(n,j) * (n+4-j)!.

%F a(n) = A306234(n+4,4).

%p a:= n-> (k-> -add((-1)^j*binomial(n, j)*(n+k-j)!, j=1..n)/k!)(4):

%p seq(a(n), n=0..23);

%t m = 23;

%t CoefficientList[(1-Exp[-x])/(1-x)^5 + O[x]^(m+1), x]*Range[0, m]! (* _Jean-François Alcover_, May 03 2021 *)

%Y Column k=4 of A324362.

%Y Cf. A306234.

%K nonn

%O 0,3

%A _Alois P. Heinz_, Feb 23 2019