%I #10 Feb 05 2019 01:39:31
%S 1,1,0,1,10,0,1,110,100,0,1,1110,110100,1000,0,1,11110,1110110100,
%T 1101001000,10000,0,1,111110,111101110110100,11101101001101001000,
%U 110100100010000,100000,0,1,1111110,111110111101110110100,11110111011010011101101001101001000
%N The "binary Pascal triangle" read by rows.
%C Left edge is all 1's, right edge (after initial row) is all 0's; interior entries are concatenations of two numbers above them.
%H Rémy Sigrist, <a href="/A323836/b323836.txt">Rows n = 0..12, flattened</a>
%H J. Grytczuk, <a href="http://dx.doi.org/10.1016/j.disc.2003.10.022">Another variation on Conway's recursive sequence</a>, Discr. Math. 282 (2004), 149-161.
%e Triangle begins:
%e 1,
%e 1, 0,
%e 1, 10, 0,
%e 1, 110, 100, 0,
%e 1, 1110, 110100, 1000, 0,
%e 1, 11110, 1110110100, 1101001000, 10000, 0,
%e 1, 111110, 111101110110100, 11101101001101001000, 110100100010000, 100000, 0,
%e ...
%Y Cf. A007318, A323837.
%K nonn,tabl
%O 0,5
%A _N. J. A. Sloane_, Feb 04 2019
%E More terms from _Rémy Sigrist_, Feb 05 2019