%I #5 Jan 28 2019 08:06:40
%S 1,1,4,14,56,219,1001,4588
%N Number of non-isomorphic multiset partitions of strict multiset partitions of weight n.
%C The weight of an atom is 1, and the weight of a multiset is the sum of weights of its elements, counting multiplicity.
%e Non-isomorphic representatives of the a(1) = 1 through a(3) = 14 multiset partitions:
%e {{1}} {{11}} {{111}}
%e {{12}} {{112}}
%e {{1}{2}} {{123}}
%e {{1}}{{2}} {{1}{11}}
%e {{1}{12}}
%e {{1}{23}}
%e {{2}{11}}
%e {{1}}{{11}}
%e {{1}}{{12}}
%e {{1}}{{23}}
%e {{1}{2}{3}}
%e {{2}}{{11}}
%e {{1}}{{2}{3}}
%e {{1}}{{2}}{{3}}
%Y Cf. A002846, A005121, A007716, A050343, A213427, A269134, A283877, A306186, A316980, A317791, A318564, A318565, A318566, A318812.
%Y Cf. A323788, A323789, A323790, A323791, A323792, A323793, A323794, A323795.
%K nonn,more
%O 0,3
%A _Gus Wiseman_, Jan 27 2019