%I #9 Jan 28 2019 08:07:10
%S 1,1,3,5,9,10,22,20,37,44,65,68,127,119,182,226,307,335,511,544,782,
%T 913,1171,1359,1908,2121,2738,3286,4174,4821,6305,7182,9108,10739,
%U 13195,15548,19465,22397,27477,32423,39448,45843,55995,64871,78343,91761,109325
%N Dirichlet convolution of the integer partition numbers A000041 with the strict partition numbers A000009.
%C Also the number of strict multiset partitions of constant multiset partitions of integer partitions of n.
%H Vaclav Kotesovec, <a href="/A323765/b323765.txt">Table of n, a(n) for n = 0..10000</a>
%F a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*n*sqrt(3)). - _Vaclav Kotesovec_, Jan 28 2019
%e The a(1) = 1 through a(5) = 10 strict multiset partitions of constant multiset partitions of integer partitions:
%e ((1)) ((2)) ((3)) ((4)) ((5))
%e ((11)) ((21)) ((31)) ((41))
%e ((1)(1)) ((111)) ((22)) ((32))
%e ((1)(1)(1)) ((211)) ((311))
%e ((1))((1)(1)) ((1111)) ((221))
%e ((2)(2)) ((2111))
%e ((11)(11)) ((11111))
%e ((1)(1)(1)(1)) ((1)(1)(1)(1)(1))
%e ((1))((1)(1)(1)) ((1))((1)(1)(1)(1))
%e ((1)(1))((1)(1)(1))
%t Join[{1}, Table[Sum[PartitionsQ[d]*PartitionsP[n/d],{d,Divisors[n]}],{n,1,100}]]
%Y Cf. A000009, A000041, A001970, A034729, A047968, A050343, A316980, A319066, A323764, A323766, A323774.
%K nonn
%O 0,3
%A _Gus Wiseman_, Jan 27 2019