
Notes for A323748
Let b ̸= −1, 0, 1 be an integer. A prime p is called a unique-period prime in base b if there is no other

prime q such that ordp(b) = ordq(b), where ordm(a) is the multiplicative order of a modulo m. Let the
Zsigmondy numbers Zs(n, a, b) (n ∈ N∗; a, b ∈ Z, a, b ̸= 0, |a| ̸= |b|) be defined as follows: Zs(n, a, b) is
the largest divisor of |an − bn| that is coprime to aj − bj for all j < n. (OEIS A323748 gives the values of
Zs(n, k, 1) for n ∈ N∗, k ≥ 2.) An important observation is that p is a unique-period prime in base b if and
only if Zs(ordp(b), b, 1) = pe for some e ≥ 1.

Given prime p, how to find bases b in which p is a unique-period prime? That amounts to finding the
solutions (b, e) to Zs(n, b, 1) = pe, where n|(p − 1). Note that the cases n = 1 and n = 2 (when p > 2) are
trivial: Zs(1, b, 1) = b− 1, so Zs(n, b, 1) = pe ⇔ b = pe + 1(e ≥ 1); Zs(1, b, 1) = odd(b+ 1) where odd means
the odd part (OEIS A000265), so Zs(2, b, 1) = pe ⇔ b = 2e0pe − 1(e0 ≥ 0, e ≥ 1). We will assume that
n ≥ 3 later on. Here comes an important property of the Zsigmondy numbers: for n ≥ 3, let p0 = gpf(n)
be the greatest prime factor of n, write n = n0p

t
0, gcd(n0, p0) = 1. If n0|(p0 − 1) (namely, n is in OEIS

A342256), then Zs(n, b, 1) is either Φn(b) or Φn(b)/gpf(n), where Φn is the n-th cyclotomic polynomial;
otherwise (namely, n = 12, 15, 24, 28, 30, 33, 35, · · · is in OEIS A253235), then Zs(n, b, 1) = Φn(b).

(a) If n ≥ 4 is a power of 2, then p ≡ 1(mod 4). We have Zs(n, b, 1) = bn/2 +1 or (bn/2 +1)/2. So when
is Zs(n, b, 1) equal to pe? According to the parity of e we have four equations

(bn/4)2 + 1 = (pe/2)2, (bn/4)2 + 1 = p(p(e−1)/2)2, (bn/4)2 + 1 = 2(pe/2)2, (bn/4)2 + 1 = 2p(p(e−1)/2)2.

The first one is not possible; to solve the remaining three we need to find the solutions (x, y) to the Pell
equations where y is a power of p

x2 − py2 = −1, x2 − 2y2 = −1, x2 − 2py2 = −1.

Let (x0, y0) be the fundamental solution to x2−ry2 = −1(r ∈ {2, p, 2p}), then by the theory of Pell equations,
the solutions y are given by

y =
(x0 + y0

√
p)m − (x0 − y0

√
p)m

2
√
p

,

where m is an odd number. Note that the sequence
{
ym =

(x0 + y0
√
p)m − (x0 − y0

√
p)m

2
√
p

}
m∈N

is a Lucas

sequence of the first kind, so it is a divisible sequence: ym|ym′ whenever m|m′. Suppose that m0 is the
smallest m ∈ N∗ such that pe|ym, and that ym0 is not a power of p, then pe|ym would imply that ym is
also divisible by some non-power of p. In this case, the only possible case where ym is a power of p is
ym = 1, p, · · · , pe−1.

Example. p = 5. The solutions y to x2 − 5y2 = −1 are

y =
(2 +

√
5)m − (2− 5

√
5)m

2
√
5

,

where m is an odd number. Let ym =
(2 +

√
5)m − (2− 5

√
5)m

2
√
5

, then 53|ym ⇔ 125|m ⇔ y125|ym. But y125

is not a power of 5, so ym cannot be a power of 5 with exponent ≥ 3. The equations x2 − 2y2 = −1 and
x2 − 10y2 = −1 can be similarly discussed.
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(b) If n is odd but not squarefree, then we have the formula Φn(b) = Φrad(n)(b
n/rad(n)), where rad is the

squarefree kernel (OEIS A007947). So the equation Zs(n, b, 1) = pe can be written as either Φrad(n)(b
n/rad(n)) =

pe or Φrad(n)(b
n/rad(n)) = gpf(n)pe (if n is in A342256). Note that if n is in A342256, then so is rad(n).

(c) If n is even and not a power of 2, write n = 2r · n′ for odd n′, then we have the formula Φn(b) =

Φrad(n′)(−b2
r−1n′/rad(n′)). So the equation Zs(n, b, 1) = pe can be written as either Φrad(n′)(−b2

r−1n′/rad(n′)) =

pe or Φrad(n′)(−b2
r−1n′/rad(n′)) = gpf(n)pe (if n is in A342256). Note that if n is in A342256, then so is rad(n′).

The cases (b) and (c) can both be reduced to the case where n is an odd squarefree number ≥ 3, and
the equations in question are Φn(b) = pe and Φn(b) = gpf(n)pe (if n is in A342256). The following is a list
of the values of n and the equations that needs to be considered.

p Values of n Equations to study
2 − −
3 − −
5 − −
7 3 x2 + x+ 1 = 7e, x2 + x+ 1 = 3 · 7e

11 5 x4 + x3 + x2 + x+ 1 = 11e, x4 + x3 + x2 + x+ 1 = 3 · 11e

13 3 x2 + x+ 1 = 13e, x2 + x+ 1 = 3 · 13e

17 − −
19 3 x2 + x+ 1 = 19e, x2 + x+ 1 = 3 · 19e

23 11
x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x+ 1 = 23e,

x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x+ 1 = 11 · 23e

29 7
x6 + x5 + x4 + x3 + x2 + x+ 1 = 29e,

x6 + x5 + x4 + x3 + x2 + x+ 1 = 7 · 29e

31
3 x2 + x+ 1 = 31e, x2 + x+ 1 = 3 · 31e

5 x4 + x3 + x2 + x+ 1 = 31e, x4 + x3 + x2 + x+ 1 = 5 · 31e

15 x8 − x7 + x5 − x4 + x3 − x+ 1 = 31e

37 3 x2 + x+ 1 = 37e, x2 + x+ 1 = 3 · 37e

Remark. To find the solutions to x2 + x + 1 = pe and x2 + x + 1 = 3pe for p ≡ 1(mod 3), one can
imitate the method mentioned here.

Now we write these equations as Diophantine equations, where n ≥ 3 is an odd squarefree factor of
p− 1. First suppose that n > 3. If n is in A342256, according to the parity of e we have four equations

Φn(b) = (pe/2)2,Φn(b) = p(p(e−1)/2)2,Φn(b) = gpf(n)(pe/2)2,Φn(b) = gpf(n)p(p(e−1)/2)2;

if n is in A253235, only the first two are present. So we need to find the solutions (b, y) where y is a power
of p to

Φn(b) = y2,Φn(b) = py2,Φn(b) = gpf(n)y2,Φn(b) = gpf(n)py2

(if n is in A253235, only the first two are present). Note that Φn has degree ≥ 4, by Faltings’s theorem, each
equation has only finitely many integer solutions.
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If n = 3, according to the remainder of e modulo 3 we have six equations

x2 + x+ 1 = (pe/3)3, x2 + x+ 1 = p(p(e−1)/2)3, x2 + x+ 1 = p2(p(e−2)/2)3,

x2 + x+ 1 = 3(pe/3)3, x2 + x+ 1 = 3p(p(e−1)/2)3, x2 + x+ 1 = 3p2(p(e−2)/2)3,

So we need to find the solutions (b, y) where y is a power of p to

x2 + x+1 = y3, x2 + x+1 = py3, x2 + x+1 = p2y3, x2 + x+1 = 3y3, x2 + x+1 = 3py3, x2 + x+1 = 3p2y3.

Each equation also has only finitely many integer solutions.
In conclusion, since there are only finitely many equations and each equation has only finitely many

integer solutions, we know that the “exceptional” bases b subject to n ≥ 3 are only finitely many.
The following is a list of what Diophantine equations to study for different p. Keep in mind the solutions

y we need are the powers of p. Note that x4 + x3 + x2 + x + 1 = y2 (n = 5) are easily seen to only have
solutions (0,±1), (3,±11) (see here for an example of a proof), so this equation is not listed.

p Values of n Diophantine equations to study
2 − −
3 − −
5 − −

7 3
x2 + x+ 1 = y3, x2 + x+ 1 = 7y3, x2 + x+ 1 = 49y3,

x2 + x+ 1 = 3y3, x2 + x+ 1 = 21y3, x2 + x+ 1 = 147y3

11 5 x4 + x3 + x2 + x+ 1 = 11y2, x4 + x3 + x2 + x+ 1 = 5y2, x4 + x3 + x2 + x+ 1 = 55y2

13 3
x2 + x+ 1 = y3, x2 + x+ 1 = 13y3, x2 + x+ 1 = 169y3,

x2 + x+ 1 = 3y3, x2 + x+ 1 = 39y3, x2 + x+ 1 = 507y3

17 − −

19 3
x2 + x+ 1 = y3, x2 + x+ 1 = 19y3, x2 + x+ 1 = 361y3,

x2 + x+ 1 = 3y3, x2 + x+ 1 = 57y3, x2 + x+ 1 = 1083y3

23 11

x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x+ 1 = y2,

x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x+ 1 = 23y2,

x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x+ 1 = 11y2,

x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x+ 1 = 253y2

29 7

x6 + x5 + x4 + x3 + x2 + x+ 1 = y2,

x6 + x5 + x4 + x3 + x2 + x+ 1 = 29y2,

x6 + x5 + x4 + x3 + x2 + x+ 1 = 7y2,

x6 + x5 + x4 + x3 + x2 + x+ 1 = 203y2

31
3

x2 + x+ 1 = y3, x2 + x+ 1 = 31y3, x2 + x+ 1 = 961y3,

x2 + x+ 1 = 3y3, x2 + x+ 1 = 93y3, x2 + x+ 1 = 2883y3

5 x4 + x3 + x2 + x+ 1 = 31y2, x4 + x3 + x2 + x+ 1 = 5y2, x4 + x3 + x2 + x+ 1 = 155y2

15 x8 − x7 + x5 − x4 + x3 − x+ 1 = y2, x8 − x7 + x5 − x4 + x3 − x+ 1 = 31y2

37 3
x2 + x+ 1 = y3, x2 + x+ 1 = 37y3, x2 + x+ 1 = 1369y3,

x2 + x+ 1 = 3y3, x2 + x+ 1 = 111y3, x2 + x+ 1 = 4107y3
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Remark. For p = 11: The equations x4 + x3 + x2 + x+1 = 11y2, x4 + x3 + x2 + x+1 = 5y2, x4 + x3 +

x2 + x+ 1 = 55y2 can be transformed into elliptic curve equations.
(1) Write

X = 33 · 19x
2 + 7x+ 66y + 4

x2 + 4x+ 4
, Y = ±3267 · 7x

3 + 4x2 + 23xy + x+ 2y − 2

x3 + 6x2 + 12x+ 8
,

The equation 11y2 = x4 + x3 + x2 + x+ 1 becomes

Y 2 = X3 − 32670X − 898425.

(2) Write

X = 75 · 2x
2 + 2x+ 6y + 2

x2 − 2x+ 1
, Y = ±3375 · x

3 + x2 + 2xy + x+ 2y + 1

x3 − 3x2 + 3x− 1
,

The equation 5y2 = x4 + x3 + x2 + x+ 1 becomes

Y 2 = X3 − 6750X − 84375.

(3) Write

X = 825 · 8x
2 + 3x+ 66y + 3

4x2 + 12x+ 9
, Y = ±408375 · 2x

3 + x2 + 14xy − y − 1

8x3 + 36x2 + 54x+ 27
,

The equation 55y2 = x4 + x3 + x2 + x+ 1 becomes

Y 2 = X3 − 816750X − 112303125.
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