Integers \boldsymbol{n} that are \boldsymbol{k}-powerful. Compiled by Stan Wagon, Jan. 2019.
For $k=5$: see A323610; $k=6$: see A323629; $k=7$: see A323614.

	smaller than critical power of 2	2^{k+1}											differences Δ	notes
$k=-1$		1	2	3	4	5	6	7	8	9	10	$\rightarrow \infty$	1	symmetric
$k=0$		2	4	6	8	10	12	14	16	18	20	$\rightarrow \infty$	2	antisymmetric
$k=1$		4	8	12	16	20	24	28	32	36	40	$\rightarrow \infty$	4	symmetric
$k=2$		$\underline{8}$	12	16	20	24	28	32	36	40	44	$\rightarrow \infty$	4	antisymmetric
$k=3$		16	24	32	40	48	56	64	72	80	88	$\rightarrow \infty$	8	symmetric
$k=4$		32	40	48	$\overline{56}$	64	72	80	88	96	104	$\rightarrow \infty$	8	antisymmetric
$k=5$	48	$\overline{64}$	$\overline{72}$	$\overline{\mathbf{8 0}}$	88	96	104	112	120	128	136	$\rightarrow \infty$	8	symmetric
$k=6$	$\overline{96}$	$\overline{128}$	144	160	176	192	200	208	216	224	232	$\rightarrow \infty$	8	antisymmetric
$k=7$	$\overline{144} \overline{192} 208224240$	$\overline{256}$	272	288	304	320	336	352	368	384	400	$\rightarrow \infty$	16	symmetric
$k=8$	192	$\overline{512}$	544										$16 ?$	antisymmetric? 256 fails

Red entries are those that are not part of the ultimate arithmetic progression that holds out to infinity. Underlined entries admit a unique witnessing set. Overlined entries are not unique (and many of the unmarked ones are not unique). Essentially nothing is known about $k=8$, though it is known that 192 is the smallest example. The discoverers of the final complete sequence are:

```
k=2 and 3: David Boyd
\(k=4\) and 5: Berend and Golan
\(k=6\) and 7 : Golan, Pratt, and Wagon
```

Some of the negative results for $k=6$ and 7 are by Berend and Golan.

