%I #6 Jan 09 2019 21:22:38
%S 1,3,4,1,6,12,8,3,2,18,12,4,14,24,24,1,18,6,20,6,32,36,24,12,2,42,4,8,
%T 30,72,32,3,48,54,48,2,38,60,56,18,42,96,44,12,12,72,48,4,2,6,72,14,
%U 54,12,72,24,80,90,60,24,62,96,16,1,84,144,68,18,96,144,72,6,74,114,8,20,96,168,80,6,2,126,84,32,108,132,120,36,90,36
%N Greatest common divisor of product (1+(p^e)) and product (1+p), where p ranges over prime factors of n, with e corresponding exponent; a(n) = gcd(A034448(n), A048250(n)).
%H Antti Karttunen, <a href="/A323159/b323159.txt">Table of n, a(n) for n = 1..16384</a>
%F a(n) = gcd(A034448(n), A048250(n)).
%o (PARI)
%o A034448(n) = { my(f=factorint(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); }; \\ After code in A034448
%o A048250(n) = factorback(apply(p -> p+1,factor(n)[,1]));
%o A323159(n) = gcd(A034448(n), A048250(n));
%Y Cf. A034448, A048250, A323160, A323163.
%K nonn
%O 1,2
%A _Antti Karttunen_, Jan 09 2019