login
A322707
a(0)=0, a(1)=5 and a(n) = 22*a(n-1) - a(n-2) + 10 for n > 1.
2
0, 5, 120, 2645, 58080, 1275125, 27994680, 614607845, 13493377920, 296239706405, 6503780163000, 142786923879605, 3134808545188320, 68823001070263445, 1510971215000607480, 33172543728943101125, 728284990821747617280, 15989097254349504479045
OFFSET
0,2
COMMENTS
Solutions to X*(X+1)=30*Y^2 with Y=A077421. - R. J. Mathar, Mar 14 2023
FORMULA
sqrt(a(n)+1) + sqrt(a(n)) = (sqrt(6) + sqrt(5))^n.
sqrt(a(n)+1) - sqrt(a(n)) = (sqrt(6) - sqrt(5))^n.
a(n) = 23*a(n-1) - 23*a(n-2) + a(n-3) for n > 2.
From Colin Barker, Dec 24 2018: (Start)
G.f.: 5*x*(1 + x) / ((1 - x)*(1 - 22*x + x^2)).
a(n) = ((11+2*sqrt(30))^(-n) * (-1+(11+2*sqrt(30))^n)^2) / 4.
(End)
2*a(n) = A077422(n)-1. - R. J. Mathar, Mar 16 2023
EXAMPLE
(sqrt(6) + sqrt(5))^2 = 11 + 2*sqrt(30) = sqrt(121) + sqrt(120). So a(2) = 120.
PROG
(PARI) concat(0, Vec(5*x*(1 + x) / ((1 - x)*(1 - 22*x + x^2)) + O(x^20))) \\ Colin Barker, Dec 24 2018
CROSSREFS
Row 5 of A322699.
Cf. A188930 (sqrt(5)+sqrt(6)).
Sequence in context: A193328 A002008 A307350 * A160695 A158564 A252928
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Dec 24 2018
STATUS
approved