%I #52 Feb 08 2019 19:30:04
%S 2,10,84,1028,15630,279942,5764808,134217736,3486784410,100000000010,
%T 3138428376732,106993205379084,3937376385699302,155568095557812238,
%U 6568408355712890640,295147905179352825872,14063084452067724991026,708235345355337676357650,37589973457545958193355620
%N a(n) = n + n*n^n.
%C All terms are produced by successively applying the three basic operations: exponentiation, multiplication and addition.
%H Muniru A Asiru, <a href="/A322406/b322406.txt">Table of n, a(n) for n = 1..380</a>
%H R. L. Goodstein, <a href="https://www.jstor.org/stable/2266486">Transfinite Ordinals in Recursive Number Theory</a>, Journal of Symbolic Logic, Vol. 12, No. 4 (Dec. 1947), pp. 123-129.
%F E.g.f.: exp(x) * x - LambertW(-x)/(1 + LambertW(-x))^3. - _Vaclav Kotesovec_, Dec 20 2018
%e a(3) = 3 + 3*3^3 = 3 + 3*27 = 8 + 81 = 84.
%p [n+n*n^n$n=1..20]; # _Muniru A Asiru_, Dec 07 2018
%t a[n_]:=n+n*n^n; Array[a, 20] (* _Stefano Spezia_, Dec 07 2018 *)
%o (GAP) List([1..20],n->n+n*n^n); # _Muniru A Asiru_, Dec 07 2018
%o (PARI) a(n) = n+n*n^n \\ _Felix Fröhlich_, Dec 07 2018
%Y Cf. A066068, A055897.
%Y Equals 2 * A108398.
%K nonn,easy
%O 1,1
%A _Ivan Stoykov_, Dec 07 2018
%E a(12)-a(19) from _Stefano Spezia_, Dec 07 2018