login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of ways to choose a stable partition of an antichain of sets spanning n vertices.
2

%I #7 Nov 26 2018 17:04:13

%S 1,1,3,25,773,160105

%N Number of ways to choose a stable partition of an antichain of sets spanning n vertices.

%C A stable partition of a hypergraph or set system is a set partition of the vertices where no non-singleton edge has all its vertices in the same block.

%e The a(3) = 25 stable partitions of antichains on 3 vertices. The antichain is on top, and below is a list of all its stable partitions.

%e {1}{2}{3} {1,2,3} {1}{2,3} {1,3}{2} {1,2}{3}

%e -------- -------- -------- -------- --------

%e {{1,2,3}} {{1},{2,3}} {{1,2},{3}} {{1},{2,3}} {{1},{2,3}}

%e {{1},{2,3}} {{1,2},{3}} {{1,3},{2}} {{1,2},{3}} {{1,3},{2}}

%e {{1,2},{3}} {{1,3},{2}} {{1},{2},{3}} {{1},{2},{3}} {{1},{2},{3}}

%e {{1,3},{2}} {{1},{2},{3}}

%e {{1},{2},{3}}

%e .

%e {1,3}{2,3} {1,2}{2,3} {1,2}{1,3} {1,2}{1,3}{2,3}

%e -------- -------- -------- --------

%e {{1,2},{3}} {{1,3},{2}} {{1},{2,3}} {{1},{2},{3}}

%e {{1},{2},{3}} {{1},{2},{3}} {{1},{2},{3}}

%t sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];

%t stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];

%t Table[Sum[Length[stableSets[Complement[Subsets[Range[n]],Union@@Subsets/@stn],SubsetQ]],{stn,sps[Range[n]]}],{n,5}]

%Y Cf. A000110, A000569, A006125, A006126, A229048, A240936, A277203, A321979, A322064, A322065.

%K nonn,more

%O 0,3

%A _Gus Wiseman_, Nov 25 2018