login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A321438 a(n) = Sum_{d|n} (-1)^(n/d+1)*d^n. 4
1, 3, 28, 239, 3126, 45990, 823544, 16711423, 387440173, 9990235398, 285311670612, 8913939907598, 302875106592254, 11111328602501550, 437893920912786408, 18446462594437808127, 827240261886336764178, 39346258082220810086373, 1978419655660313589123980, 104857499999905732078938574 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Seiichi Manyama, Table of n, a(n) for n = 1..386

FORMULA

G.f.: Sum_{k>=1} (k*x)^k/(1 + (k*x)^k).

L.g.f.: log(Product_{k>=1} (1 + k^k*x^k)^(1/k)) = Sum_{n>=1} a(n)*x^n/n.

a(n) ~ n^n. - Vaclav Kotesovec, Nov 10 2018

MATHEMATICA

Table[Sum[(-1)^(n/d + 1) d^n, {d, Divisors[n]}], {n, 20}]

nmax = 20; Rest[CoefficientList[Series[Sum[(k x)^k/(1 + (k x)^k), {k, 1, nmax}], {x, 0, nmax}], x]]

nmax = 20; Rest[CoefficientList[Series[Log[Product[(1 + k^k x^k)^(1/k), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]]

PROG

(PARI) a(n) = sumdiv(n, d, (-1)^(n/d+1)*d^n); \\ Michel Marcus, Nov 09 2018

(MAGMA) m:=20; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&+[(k*x)^k/(1+(k*x)^k): k in [1..m]]) ));  // G. C. Greubel, Nov 11 2018

CROSSREFS

Cf. A000593, A023887, A078306, A078307, A186633, A284900, A284926, A284927, A321385.

Sequence in context: A338689 A094296 A172241 * A341926 A323959 A321385

Adjacent sequences:  A321435 A321436 A321437 * A321439 A321440 A321441

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Nov 09 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 5 04:03 EDT 2021. Contains 346457 sequences. (Running on oeis4.)