

A043296


Sum of digits of denominator of Bernoulli number B(2n).


2



6, 3, 6, 3, 12, 12, 6, 6, 24, 6, 12, 12, 6, 15, 12, 6, 6, 30, 6, 12, 15, 15, 12, 15, 12, 15, 24, 15, 12, 42, 6, 6, 21, 3, 24, 21, 6, 3, 15, 6, 21, 15, 6, 12, 21, 6, 6, 24, 6, 12, 15, 15, 12, 30, 15, 24, 6, 15, 6, 39, 6, 3, 42, 6, 24, 24, 6, 6, 30, 33, 6, 42, 6, 15, 21, 3, 12, 42, 6, 6
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Table of n, a(n) for n=1..80.


FORMULA

a(n) = A007953(A002445(n)).  Michel Marcus, Feb 16 2021


EXAMPLE

Denominator(B(2*9))=798 and 7+9+8=24 hence a(9)=24.


MATHEMATICA

Total[IntegerDigits[#]]&/@Denominator[BernoulliB[2*Range[80]]] (* Harvey P. Dale, Jul 02 2017 *)


PROG

(PARI) a(n) = sumdigits(denominator(bernfrac(2*n))); \\ Michel Marcus, Feb 16 2021
(Python)
from sympy import bernoulli
def a(n): return sum(map(int, str(bernoulli(2*n).denominator())))
print([a(n) for n in range(1, 81)]) # Michael S. Branicky, Jun 03 2021


CROSSREFS

Cf. A002445, A007953, A043295.
Sequence in context: A194625 A165065 A069938 * A199186 A176715 A229522
Adjacent sequences: A043293 A043294 A043295 * A043297 A043298 A043299


KEYWORD

base,easy,nonn


AUTHOR

Benoit Cloitre, Mar 24 2002


STATUS

approved



