login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of Product_{k>=1} (1 + x^k)^tau_k(k), where tau_k(k) = number of ordered k-factorizations of k (A163767).
1

%I #15 Nov 03 2018 11:46:05

%S 1,1,2,5,14,22,70,109,318,551,1203,2136,5752,9263,20641,37151,85084,

%T 144918,317356,546730,1196302,2076810,4281584,7459351,15860805,

%U 27146911,54715933,95712097,194059563,334322338,663159101,1147479053,2270647257,3923732160,7587368893

%N Expansion of Product_{k>=1} (1 + x^k)^tau_k(k), where tau_k(k) = number of ordered k-factorizations of k (A163767).

%H Seiichi Manyama, <a href="/A321287/b321287.txt">Table of n, a(n) for n = 0..1000</a>

%t tau[n_,1] = 1; tau[n_,k_]:=tau[n,k] = Plus @@ (tau[#, k-1] & /@ Divisors[n]); nmax = 40; CoefficientList[Series[Product[(1+x^k)^tau[k,k], {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Nov 03 2018, after _Robert G. Wilson v_ *)

%Y Cf. A163767, A304965, A321192.

%K nonn

%O 0,3

%A _Seiichi Manyama_, Nov 02 2018