%I #31 Sep 21 2019 14:56:34
%S 266,506,759,1045,1288,1463,3795
%N Sporadic numbers: n is defined to be sporadic if the set of groups G not in {A_n, S_n} and having a core-free maximal subgroup of index n is nonempty and contains only sporadic simple groups.
%C A finite group G has a core-free maximal subgroup H of index n if and only if it is a primitive permutation group of degree n (acting on the set G/H of cosets).
%C There are no other sporadic numbers less than 4096 (see computation below).
%C According to Derek Holt, the next sporadic number is 4180, and the last one should be 492693551703971265784426771318116315247411200000000 (coming from the maximal subgroup 41:40 of the Monster, and assuming that L_2(13) is not maximal).
%C Derek Holt suggested another sequence where we also allow the extensions of the sporadic simple groups.
%D The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.9.3, 2018. gap-system.org.
%H S. Palcoux, <a href="https://mathoverflow.net/q/336691/34538">The sporadic numbers</a> (version: 2019-07-22), MathOverflow.
%o (GAP)
%o IsSporadic:=function(G)
%o if not IsSimple(G) then
%o return false;
%o else
%o return IsomorphismTypeInfoFiniteSimpleGroup(G).series="Spor";
%o fi;
%o end;;
%o SporadicNumbers:=function(b1,b2)
%o local L,i,n,a,j,G;
%o L:=[];
%o for i in [b1..b2] do
%o n:=NrPrimitiveGroups(i);
%o if n>2 then
%o a:=0;
%o for j in [1..n] do
%o G:=PrimitiveGroup(i,j);
%o if not G=SymmetricGroup(i) and not G=AlternatingGroup(i) and not IsSporadic(G) then
%o a:=1;
%o break;
%o fi;
%o od;
%o if a=0 then
%o Add(L,i);
%o fi;
%o fi;
%o od;
%o return L;
%o end;;
%o SporadicNumbers(1,4095);
%o # gives: [ 266, 506, 759, 1045, 1288, 1463, 3795 ]
%Y Cf. A102842, A001228, A174601, A174848, A261717, A263447, A121236.
%K nonn,fini,more
%O 1,1
%A _Sébastien Palcoux_, Aug 27 2019