login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A321125 T(n,k) = b(n+k) - (2*b(n)*b(k) + 1)*b(n*k) + b(n) + b(k) + 1, where b(n) = A154272(n+1), square array read by antidiagonals (n >= 0, k >= 0). 2

%I #21 Apr 10 2019 21:55:02

%S 1,1,1,1,2,1,1,1,1,1,1,1,3,1,1,1,1,2,2,1,1,1,1,2,1,2,1,1,1,1,2,1,1,2,

%T 1,1,1,1,2,1,1,1,2,1,1,1,1,2,1,1,1,1,2,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1,

%U 2,1,1,1,1,1,1,2,1,1,1,1,2,1,1,1,1,1,1,1,2,1,1

%N T(n,k) = b(n+k) - (2*b(n)*b(k) + 1)*b(n*k) + b(n) + b(k) + 1, where b(n) = A154272(n+1), square array read by antidiagonals (n >= 0, k >= 0).

%C Let <K>(A,B,d) denote the three-variable bracket polynomial for the two-bridge knot with Conway's notation C(n,k). Then T(n,k) is the leading coefficient of the reduced polynomial x*<K>(1,1,x). In Kauffman's language, T(n,k) is the number of states of the two-bridge knot C(n,k) corresponding to the maximum number of Jordan curves.

%D Louis H. Kauffman, Formal Knot Theory, Princeton University Press, 1983.

%H Michael De Vlieger, <a href="/A321125/b321125.txt">Table of n, a(n) for n = 0..11475</a> (rows 0 <= n <= 150, flattened).

%H Louis H. Kauffman, <a href="https://doi.org/10.1016/0040-9383(87)90009-7">State models and the Jones polynomial</a>, Topology Vol. 26 (1987), 395-407.

%H Kelsey Lafferty, <a href="https://scholar.rose-hulman.edu/rhumj/vol14/iss2/7/">The three-variable bracket polynomial for reduced, alternating links</a>, Rose-Hulman Undergraduate Mathematics Journal Vol. 14 (2013), 98-113.

%H Matthew Overduin, <a href="https://www.math.csusb.edu/reu/OverduinPaper.pdf">The three-variable bracket polynomial for two-bridge knots</a>, California State University REU, 2013.

%H Franck Maminirina Ramaharo, <a href="/A321125/a321125.pdf">Illustration of T(2,2)</a>

%H Franck Maminirina Ramaharo, <a href="/A321125/a321125.txt">Note on this sequence and related ones</a>

%H Franck Ramaharo, <a href="https://arxiv.org/abs/1902.08989">A generating polynomial for the two-bridge knot with Conway's notation C(n,r)</a>, arXiv:1902.08989 [math.CO], 2019.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BracketPolynomial.html">Bracket Polynomial</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/2-bridge_knot">2-bridge knot</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Bracket_polynomial">Bracket polynomial</a>

%F T(n,0) = T(0,n) = 1, and T(n,k) = b(n+k) - b(n)*b(k) - b(n*k) + c(n)*c(k) for n >= 1, k >= 1, where b(n) = A154272(n+1) and c(n) = A294619(n).

%F T(n,1) = A300453(n+1,A321126(n,1)).

%F T(n,2) = A300454(n,A321126(n,2)).

%F T(n,n) = A321127(n,A004280(n+1)).

%F G.f.: (1 + (x - x^2)*y - (x - 3*x^2 + x^3)*y^2 - x^2*y^3)/((1 - x)*(1 - y)).

%F E.g.f.: ((x^2 + 2*exp(x))*exp(y) - x^2 + (2*x - x^2)*y - (1 + x - exp(x))*y^2)/2.

%e Square array begins:

%e 1, 1, 1, 1, 1, 1, ...

%e 1, 2, 1, 1, 1, 1, ...

%e 1, 1, 3, 2, 2, 2, ...

%e 1, 1, 2, 1, 1, 1, ...

%e 1, 1, 2, 1, 1, 1, ...

%e 1, 1, 2, 1, 1, 1, ...

%e ...

%t b[n_] = If[n == 0 || n == 2, 1, 0];

%t T[n_, k_] = b[n + k] - (2*b[n]*b[k] + 1)*b[n*k] + b[n] + b[k] + 1;

%t Table[T[k, n - k], {n, 0, 12}, {k, 0, n}] // Flatten

%o (Maxima) b(n) := if n = 0 or n = 2 then 1 else 0$ /* A154272(n+1) */

%o T(n, k) := b(n + k) - (2*b(n)*b(k) + 1)*b(n*k) + b(n) + b(k) + 1$

%o create_list(T(k, n - k), n, 0, 12, k, 0, n);

%Y Cf. A300453, A300454, A316989, A321126, A321127.

%K nonn,easy,tabl

%O 0,5

%A _Franck Maminirina Ramaharo_, Nov 24 2018

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 18:03 EDT 2024. Contains 371962 sequences. (Running on oeis4.)