login
Number of chiral pairs of color patterns (set partitions) for a row of length n.
3

%I #12 Sep 19 2019 14:42:36

%S 0,0,1,4,20,86,409,1988,10404,57488,338180,2103378,13814202,95423766,

%T 691415451,5239857008,41431883216,341036489096,2916365967707,

%U 25862060748614,237434856965694,2253357681164288,22076002386446896,222979432604192844,2319295160051570620

%N Number of chiral pairs of color patterns (set partitions) for a row of length n.

%C Two color patterns are equivalent if the colors are permuted.

%C A chiral row is not equivalent to its reverse.

%H Andrew Howroyd, <a href="/A320937/b320937.txt">Table of n, a(n) for n = 1..200</a>

%F a(n) = (A000110(n) + A080107(n)) / 2 = A000110(n) - A103293(n+1) = A103293(n+1) - A080107(n).

%F a(n) = Sum_{j=1..n} (S2(n,j) - Ach(n,j)) / 2, where S2 is the Stirling subset number A008277, and Ach(n,k) = [n>=0 & n<2 & n==k] + [n>1]*(k*Ach(n-2,k) + Ach(n-2,k-1) + Ach(n-2,k-2)).

%e For a(4)=4, the chiral pairs are AAAB-ABBB, AABA-ABAA, AABC-ABCC, and ABAC-ABCB.

%t Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *)

%t Table[Sum[StirlingS2[n,j]-Ach[n,j],{j,n}]/2,{n,40}]

%o (PARI) \\ Ach is A304972 as square matrix.

%o Ach(n)={my(M=matrix(n,n,i,k,i>=k)); for(i=3, n, for(k=2, n, M[i,k]=k*M[i-2,k] + M[i-2,k-1] + if(k>2, M[i-2,k-2]))); M}

%o seq(n)={my(A=Ach(n)); vector(n, n, sum(k=1, n, stirling(n,k,2) - A[n,k])/2)} \\ _Andrew Howroyd_, Sep 18 2019

%Y Row sums of triangle A320525.

%Y Limit as k increases of column k of array A320751.

%Y Cf. A000110 (oriented), A103293 (unoriented), A080107 (achiral).

%K nonn,easy

%O 1,4

%A _Robert A. Russell_, Oct 27 2018