Coordination Sequences, Planing Numbers, and Other Recent Sequences

Neil J.A. Sloane
Visitor, Math. Dept., Rutgers Univ., Hill Center, Piscataway, NJ

The OEIS Foundation, Highland Park, NJ

Experimental Math Seminar, Jan 31 2019

1248163264128256512

102420484096819216384
327683612244896192
38476815363072611248

Periodic, easy - explain!

Outline

- Would not have become a mathematician w/o OEIS
- The succession question: need VP
- Claude Lenormand et le rabot
- "Choix de Bruxelles"
- Coordination sequences
- Knight's move Ulam-Warburton cellular automaton
- Some recent sequences and unsolved problems

From XXX Mar 19 2018, Subject: Reminiscence from a young mathematician
Dear Neil, The other day, I had the occasion to use the OEIS, something I haven't done in nearly 15 years (as an algebraic geometer, I don't seem to get that many opportunities)! I was so happy to see it thriving.

I wanted to relay a bit of nostalgia and my heartfelt thanks. Back in the late 1990s, I was a high school in Oregon. While I was interested in mathematics, I had no significant mathematically creative outlet (working class family and subpar mathematics instruction) until I discovered the OEIS in the course of trying to invent some puzzles for myself. I remember becoming a quite active contributor through the early 2000s, and eventually at one point, an editor. My experience with the OEIS, and the eventual intervention of one of my high school teachers, catalyzed my interest in studying mathematics, which I eventually did at XXX College. I went on to a Ph.D. at the University of XXX, various postdocs, and am currently at XXX.

I wanted to thank you for seriously engaging with an 18 year old kid, even though
I likely submitted my fair share of mathematically immature sequences.

> I doubt I would have become a mathematician without the OEIS!

The Succession Question

Very Important!
Looking for suggestions for Vice-President

(1926-)
(1948-)
(1982-)
(Prince William rather than Prince Charles - Hilarie Orman)

Claude Lenormand

When OEIS reached 100,000 sequences in 2004 (also its 40th birthday), we had an e-party (see OEIS Wiki). 28 countries, 150 guests.
(Today, 2019, 15 years later, 320,000 sequences. $15,000 /$ year.)

Claude Lenormand $⿶$
St-Thibault, France
Aug 15, 2004
Longue vie à vous!

60 contributions from Lenormand, 2001-2003

Claude Lenormand, letter, November 2003 Deux transformations sur les mots

1. RUNS:
2. RUNS transform
3. "Raboter", to plane

HHHTTHTTH... becomes 3212...

Kolakoski \quad A2 $=1,2,2,1,1,2,1,2,2, \ldots$ is fixed
Golomb A1462 $=1,2,2,3,3,4,4,4,5,5,5,6,6,6,6,7, \ldots$ is fixed

$$
a(n)=\text { const. }{ }^{*} n^{\wedge}(\text { phi-1 })+\text { tiny, } p h i=\text { golden ration }
$$

Claude Lenormand (page 3)

2. "Raboter" or planing a word

Shorten each run of symbols by 1 term

un rabot

> Golomb's $12233444555666677778 \ldots$ becomes

2344556667778 ...
A319434. Formula?
$12=1 \ 0 Q _2$ becomes 10_2 = 2

APPLY 'rABOTER' TO BINARY EXPANSION OF n

Claude Lenormand (page 4)

The inverse operation: lengthen all runs by 1

$$
12=1100 \text { becomes } 111000=56
$$

A175046 says what happens to n (Leroy Quet, 2009)
3,12,7,24,51,...

This is an inverse to raboter.

Theorem: \quad expand(n$)<=\left(9 \mathrm{n}^{\wedge} 2+12 \mathrm{n}\right) / 5$ with $=$ iff $\mathrm{n}=101010$... 10 in binary (me, proved by Maximilian Hasler)
(Chai Wah Wu, arXiv, recent)

Conjecture: \quad Average of expand(n) for $\mathrm{n}<\mathbf{2}^{\wedge} \mathbf{k}$ is $\mathbf{2}^{\wedge} \mathbf{k}\left(4.3^{\wedge} \mathbf{k}-1\right)$

PLAY THE DIRGE

Choix de Bruxelles

Eric Angelini, Lars Blomberg, Remy Sigrist, NJAS

Choix de Bruxelles (2)

A new operation on numbers (January 14 2019)

20218 goes to your choice of

10218	20428	
40218	$2029!$	
20118	20236	
20418	10118	
20228	40418	
20214	20109	
$202116!$	20436	
		40428
If a goes to b then also b goes to a	10109	
		40436

16 goes to any of

$16,26,13,112,8,32$

Choix de Bruxelles (3)

$$
1-2-4-8-16-\text { any of }\{13,26,32,112\}
$$

A323286 = what \mathbf{n} goes to in one step
Going from 1 to 3 takes 11 steps:

1248161125628141263

(Lorenzo Angelini)
A323454 = number of steps to reach \mathbf{n} from 1 (or -1 if can't)

Theorem: Can reach \mathbf{n} from 1 iff \mathbf{n} does not end in 0 or 5

Coordination Sequences

OEIS.org

web site,
http://oeisf.org

The 3.3.3.3.6 uniform tiling (A250120)

Coordination Sequences

Joint work with Chaim Goodman-Strauss
With thanks to Jean-Guillaume Eon, Brian Galebach, Joseph Myers, Davide Proserpio, Rémy Sigrist, Allan Wechsler, and others

Definition. $\quad G=$ graph, $P=$ node, the coordination sequence w.r.t P : $a(n)=$ number of nodes at edge-distance \mathbf{n} from P

A8574
CS is $1,4,8,12,16,20,24,28, \ldots$

$$
\text { G.f. }=\left(1+2 x+2 x^{\wedge} 2+2 x^{\wedge} 3+\ldots\right)^{\wedge} 2
$$

Coordination sequences useful for identifying graphs, tilings, crystals, etc.

Two kinds of vertices:

Degree 4: 1, 4, 8, 12, 16, 20, 24, 28, ...

Degree 3: $1,3,8,12,15,20,25,28, \ldots$
and looking them up in the OEIS leads to \rightarrow

Brick pattern, Johnson Park, Piscataway, NJ (near the zoo)

The Cairo Tiling

Two kinds of vertices:
Degree 4: 1, 4, 8, 12, 16, 20, 24, 28, ..., same as square grid! Why? A8574
Degree 3: 1, 3, 8, 12, 15, 20, 25, 28, ... A296368
Such a simple fact should have a simple proof, which led Chaim Goodman-Strauss and me to \rightarrow

Shorten all the bisecting lines by 50\%

Same graph as Cairo tiling!
Brick pattern, Johnson Park, Piscataway, NJ

The Coloring Book Method for Finding Coordination Sequences

(C.G.-S. and NJAS, Acta Cryst. A75 (2019))

Find a subgraph H such that
H is connected, meets every node

- Paths in \mathbf{H} from node to base \mathbf{P} are minimal
- H consists of trunks, branches, and twigs
- It is should be easy to see that all paths are minimal
 and to count nodes at distance \mathbf{n} from base P

Square grid: $\mathbf{a}(\mathrm{n})=\mathbf{4 n}$

Trunks and Branches for Cairo tiling, tetravalent node

Sector redrawn to show that there are no shortcuts and number of nodes goes up by 1 each step

So $a(n)=4 n$, same as for square grid

Trunks and Branches for Cairo tiling, trivalent node

Theorem: $a(0)=1, a(1)=3, a(2)=8$, then
$a(n)=4 n(n \operatorname{odd}), 4 n-1(n=0 \bmod 4), 4 n+1(n=2 \bmod 4)$

The 11 uniform or Archimedean tilings (part 1)

(3.6) A250120

(4) 48574

$\left(3^{3} \cdot 4^{2}\right)$ A8706

(6) A8486

Dual
(3. 3^{2} 4.3.4) A219529
$\times \vee \times \vee \times \vee$

(3.4.6.4) A 8574 again

The 11 distinct types of Archimedean tilings of the plane. The tiling of type ($3^{4} .6$) exists in two mirrorsymmetric (enantiomorphic) forms.

Figure 7

(4.6.12) 172154

(3.6.3.6) $\mathbf{A 8 5 7 9}$
(3. 12 ${ }^{2}$)

A 250122

(4. 8^{2})

From Wikipedia

Trunks and Branches for 2 of the 11 Uniform Tilings

3.3.4.3.4 (dual to Cairo), A219529

3.4.6.4, A8574 again!

The k-uniform tilings of the plane

(Tiles are regular polygons, group has \mathbf{k} orbits on nodes.)
Brian Galebach, 2002, A68599:

$$
\begin{array}{lcccccc}
\text { k: } 1 & 2 & 3 & 4 & 5 & 6 \\
\#: & 11 & 20 & 61 & 151 & 332 & 673
\end{array}
$$

No. of coord. seqs. $=6536$, all in OEIS
Stages in studying coord. seqs.:

- Compute initial terms
- Look up in OEIS
- Guess generating function
- Prove g.f. is correct (done for $k=1$, partly for $k=2$)

Duals done only for $k=1,2$?

The "coloring book" approach is a "method", not yet an "algorithm" It would be nice to automate it.

RCSR A 2-uniform tiling with only conjectured g.f.'s

 Type (3.4.6.4, 4.6.12), name = krt netHave 1000 terms of coord. seqs. (Joseph Myers)

For 4.6.12 node, g.f. appears to be

There are a LOT of tilings!

Tilings of a plane Moenal Tayal

And there are a LOT of articles about coord. seqs, many web sites, ...

Our "Coloring Book" paper has extensive bibliography
See especially the RCSR (Reticular Chemistry Structure Resource) of O'Keeffe et al.) and ToposPro (Blatov et al.) web sites

Conjecture: The coord. seq. of a periodic tiling of d-dimensional Euclidean space by polytopes always has a rational generating function.

What about aperiodic tilings?
There is recent work by Anton Shutov and Andrey Maleev, and Rémy Sigrist

An example of an Ammann-Beenker tiling with a unique vertex with global 8-fold symmetry

Construction

Rémy Sigrist, A303981:
$1,8,16,32,32,40,48, \ldots$
(900 terms, no g.f. known)

Coordination Sequences (cont.)

Limit of contour lines

There is work on the limiting shape of the contour lines in a tiling by Vladimir Zhuravlev and independently by

Shigeki Akiyama (arXiv:1707.02373)

Interesting topic for future work!

Knight's Move Ulam-Warburton Cellular Automaton

Classic Ulam-Warburton (Rook moves)

Knight's-move Ulam-Warburton cellular automaton

Neighbor means the 8 knight-move neighbors

You turn ON iff exactly one of your 8 nbrs is ON

A319018

Remy Sigrist

7
7

Brad Klee

Some Recent Sequences and Unsolved Problems

For example, any recent submission by Eric Angelini or Rémy Sigrist is worth studying

Typical questions to ask:

- is the sequence infinite?
- does every number appear?
- is there a formula, recurrence, g.f.?
- how fast does it grow?

Eric Angelini's remove-repeated-digits operation

Drop any digit from n that appears more than once
1231, 1123, 123111, 11023 all become 23
Write 0 if nothing left.
A320486 says what happens to n : $1,2,3, \ldots, 10,0,12,13, \ldots, 21,0,23, \ldots$

Get 0 with probability 1 , so easy to analyze!
"Factorials" 1, 2, 6, 24, 120, 720, (5040) 54, 432, (3888) 3, 30, (330) 0
A321008
Start with n , and repeatedly square-and-delete:
Conjecture (Lars Blomberg) : Reach one of 5 fixed points:

$$
0,1,1465,4376,89476 . \quad \text { (A321010) }
$$

or one of two nontrivial loops
(1465 is a fixed point: $1465{ }^{\wedge} 2=2146225->1465$)

1248163264128256512

102420484096819216384
327683612244896192
38476815363072611248

Periodic, easy - explain!

Two plots of A320486, Angelini's Remove repeated digits from n

Georg Fischer has been searching for duplicates, Many unsolved and solved problems!

A045318 Primes p such that $x^{\wedge} 8=3$ has no solution mod p. A301916 Primes which divide numbers of the form $3^{\wedge} k+1$. are almost the same, the terms in the latter but not in the former being A320481

2, 769, 1297, 6529, 7057, 8017, 8737, 12097, 12289. ...
The question is, what are these primes?
Solved by Don Reble, Oct 252018 and Richard Bumby, Nov 122018
2
Are A027595 and A007212 the same?
A027595 satisfies $\mathrm{T}^{\wedge} 2(a)=a$: given $\mathrm{a} 1<=\mathrm{a} 2<=\ldots$, let $\mathrm{b}(\mathrm{n})=$ number of ways of partitioning n into parts from a1, a2, ...
such that parts $=00 \bmod 5$ do not occur more than once.
A007212 has similar definition, but w/o the mod 5 condition.
Either there is a mistake, or there is a theorem here!

Many conjectured formulas from R. H. Hardin

Typical recent example (A250352):
How many lists x of length 3 with $x(i)$ in $[i, i+1, \ldots, i+n]$
and no term appearing more than twice in a list?

Examples: a(6) includes 2,4,6; 0,4,4; 1,7,7; ...
Empirical: $a(n)=n^{\wedge} 3+3 n \wedge 2+2 n+2$

Search for R. H. Hardin AND empirical

Allan Wechsler

No. of partitions into parts that are consecutive, all parts singletons except the largest

A321440, Nov 92018

$$
a(9)=7: 1^{\wedge} 9,12222,1233,234,333,45,9
$$

(Hint: Partitions into consec. parts = no. of odd divisors)

The Editors Who Keep the OEIS Running

Altug Alkan, Joerg Arndt, Colin Barker, Bruno Berselli, Susanna Cuyler, Harvey Dale, Michael De Vlieger, Charles Greathouse, Neil Greubel, Maximilian Hasler,

Alois Heinz, Andrew Howroyd, Robert Israel, Antti Karttunen, Michel Marcus, Seiichi Manyama, Richard Mathar, Hugo Pfoertner, Omar Pol, Giovanni Resta, Jon Schoenfield, Rémy Sigrist, and many others

THANK YOU

And we need more editors

We are swamped with submissions

No pay, but lots of fun
Work as much or as little as you like
Contact njasloane@gmail.com

Requirements: Familiarity with Math, English, and the OEIS

