%I #24 May 10 2021 23:30:34
%S 1,2,5,8,19,22,49,64,95,106,221,236,483,530,601,712,1439,1502,3021,
%T 3212,3595,3850,7721,7976,11143,11878,14629,15460,30947,31202,62433,
%U 69856,76127,80222,89821,91612,183259,192602,208601,214232,428503,431574,863189
%N Number of nonempty pairwise coprime subsets of {1,...,n}, where a single number is not considered to be pairwise coprime unless it is equal to 1.
%C Two or more numbers are pairwise coprime if no pair of them has a common divisor > 1.
%F a(n) = A187106(n) - n + 1 = A084422(n) - n.
%F a(n) = A276187(n) + 1. - _Gus Wiseman_, May 08 2021
%e The a(4) = 8 subsets of {1,2,3,4} are {1}, {1,2}, {1,3}, {1,4}, {2,3}, {3,4}, {1,2,3}, {1,3,4}. - _Michael B. Porter_, Jan 12 2019
%e From _Gus Wiseman_, May 09 2021: (Start)
%e The a(2) = 2 through a(6) = 22 sets:
%e {1} {1} {1} {1} {1}
%e {1,2} {1,2} {1,2} {1,2} {1,2}
%e {1,3} {1,3} {1,3} {1,3}
%e {2,3} {1,4} {1,4} {1,4}
%e {1,2,3} {2,3} {1,5} {1,5}
%e {3,4} {2,3} {1,6}
%e {1,2,3} {2,5} {2,3}
%e {1,3,4} {3,4} {2,5}
%e {3,5} {3,4}
%e {4,5} {3,5}
%e {1,2,3} {4,5}
%e {1,2,5} {5,6}
%e {1,3,4} {1,2,3}
%e {1,3,5} {1,2,5}
%e {1,4,5} {1,3,4}
%e {2,3,5} {1,3,5}
%e {3,4,5} {1,4,5}
%e {1,2,3,5} {1,5,6}
%e {1,3,4,5} {2,3,5}
%e {3,4,5}
%e {1,2,3,5}
%e {1,3,4,5}
%e (End)
%t Table[Length[Select[Subsets[Range[n]],CoprimeQ@@#&]],{n,10}]
%Y The case of pairs is A015614.
%Y The case with singletons is A187106.
%Y The version without singletons (except {1}) is A276187.
%Y Row sums of A320436.
%Y The version for divisors > 1 is A343654.
%Y The version for divisors without singletons is A343655.
%Y The maximal version is A343659.
%Y A018892 counts coprime unordered pairs of divisors.
%Y A051026 counts pairwise indivisible subsets of {1...n}.
%Y A087087 ranks pairwise coprime subsets of {1...n}.
%Y A326675 ranks pairwise coprime non-singleton subsets of {1...n}.
%Y Cf. A007359, A007360, A066620, A089233, A100565, A225520, A325683, A326359, A337485, A343652.
%K nonn
%O 1,2
%A _Gus Wiseman_, Jan 08 2019
%E a(25)-a(43) from _Alois P. Heinz_, Jan 08 2019