login
Expansion of Product_{k>0} theta_3(q^k), where theta_3() is the Jacobi theta function.
21

%I #44 Feb 16 2022 23:45:42

%S 1,2,2,6,8,10,22,26,36,60,78,106,152,202,258,370,478,602,828,1042,

%T 1332,1758,2198,2758,3572,4448,5518,7012,8636,10654,13350,16362,19946,

%U 24722,30070,36478,44776,54010,65202,79234,95196,114166,137686,164530,196252,235308,279718,332002

%N Expansion of Product_{k>0} theta_3(q^k), where theta_3() is the Jacobi theta function.

%C Also the number of integer solutions (a_1, a_2, ..., a_n) to the equation a_1^2 + 2*a_2^2 + ... + n*a_n^2 = n.

%H Vaclav Kotesovec, <a href="/A320067/b320067.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..1000 from Seiichi Manyama)

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/JacobiThetaFunctions.html">Jacobi Theta Functions</a>

%F Expansion of Product_{k>0} eta(q^(2*k))^5 / (eta(q^k)*eta(q^(4*k)))^2.

%F a(n) ~ log(2)^(3/8) * exp(Pi*sqrt(n*log(2))) / (4 * Pi^(1/4) * n^(7/8)). - _Vaclav Kotesovec_, Oct 05 2018

%F Expansion of Product_{k>0} theta_4(q^(2*k))/theta_4(q^(2*k-1)), where theta_4() is the Jacobi theta function. - _Seiichi Manyama_, Oct 26 2018

%t nmax = 50; CoefficientList[Series[Product[EllipticTheta[3, 0, x^k], {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Oct 05 2018 *)

%t nmax = 50; CoefficientList[Series[Product[(1 - x^(k*j))*(1 + x^(k*j))^3/(1 + x^(2*k*j))^2, {k, 1, nmax}, {j, 1, Floor[nmax/k] + 1}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Oct 05 2018 *)

%o (PARI) m=50; x='x+O('x^m); Vec(1/(prod(k=1,2*m, prod(j=1,floor(2*m/k), (1 - x^(k*j))*(1 + x^(k*j))^3/(1 + x^(2*k*j))^2 )))) \\ _G. C. Greubel_, Oct 29 2018

%o (Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((&*[(&*[(1 - x^(k*j))*(1 + x^(k*j))^3/(1 + x^(2*k*j))^2: j in [1..Floor(2*m/k)]]): k in [1..2*m]]))); // _G. C. Greubel_, Oct 29 2018

%Y Cf. A000122, A029594, A033715, A320068, A320078, A320139, A320968, A320992.

%K nonn,nice

%O 0,2

%A _Seiichi Manyama_, Oct 05 2018