

A320007


If there is k >= 0 such that floor(n/4^k) is odd and A320006(k) is 1, then a(n) = 1, otherwise a(n) = 0.


4



0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0


COMMENTS

An auxiliary sequence to compute A320006 with mutual recurrence.
First differs from the characteristic function of A047564 at n = 256.
This differs from A115971 at least at points n=2^k, where k = 64, 66, 72, 74, 80, 82, 88, 90, 96, 98, 104, 106, 112, 114, 120, 122, 192, ...


LINKS

Antti Karttunen, Table of n, a(n) for n = 0..65537
Index entries for characteristic functions


EXAMPLE

For n = 1, floor(1/4^0) = 1 is odd and A320006(0) = 1, thus a(1) = 1.
For n = 4, floor(4/4^1) = 1 is odd and A320006(1) = 1, thus a(4) = 1.
For n = 9, floor(9/4^0) = 9 is odd and A320006(0) = 1, thus a(9) = 1.
For n = 14, floor(14/4^0) = 14 is even but floor(14/4^1) = 3 is odd with A320006(1) = 1, thus a(14) = 1.
For n = 16, floor(16/4^2) = 1 is odd, but A320006(2) = 0, thus a(16) = 0.
For n = 256, floor(256/4^4) = 1 is odd, and A320006(4) = 1, thus a(256) = 1.
For n = 272, floor(272/4^2) = 17 is odd, but with A320006(2) = 0. However, floor(272/4^4) = 1 is also odd and A320006(1) = 1, thus a(272) = 1.
For n = 2^64 = 18446744073709551616, floor(2^64/4^32) = 1 is odd, but A320006(32) = 0, thus a(2^64) = 0.


PROG

(PARI)
A320006(n) = if(!n, 1, my(m=(n>>1), r=0); while(m>0, if((m%2)&&!A320007(r), return(0)); m >>= 2; r++); (1));
A320007(n) = if(!n, 0, my(m=n, s=0); while(m>0, if((m%2)&&A320006(s), return(1)); m >>= 2; s++); (0));


CROSSREFS

Cf. A320006.
Different from A115971.
Sequence in context: A316343 A288864 A115971 * A072165 A072608 A295304
Adjacent sequences: A320004 A320005 A320006 * A320008 A320009 A320010


KEYWORD

nonn


AUTHOR

Antti Karttunen, Oct 18 2018


STATUS

approved



