login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Fully multiplicative with a(p^e) = prime(p mod 4)^e.
5

%I #11 Oct 08 2018 08:08:38

%S 1,3,5,9,2,15,5,27,25,6,5,45,2,15,10,81,2,75,5,18,25,15,5,135,4,6,125,

%T 45,2,30,5,243,25,6,10,225,2,15,10,54,2,75,5,45,50,15,5,405,25,12,10,

%U 18,2,375,10,135,25,6,5,90,2,15,125,729,4,75,5,18,25,30,5,675,2,6,20,45,25,30,5,162,625,6,5,225,4,15,10,135,2,150,10,45,25,15,10

%N Fully multiplicative with a(p^e) = prime(p mod 4)^e.

%C For all i, j:

%C A319714(i) = A319714(j) => a(i) = a(j) => A065338(i) = A065338(j).

%H Antti Karttunen, <a href="/A319984/b319984.txt">Table of n, a(n) for n = 1..10000</a>

%H Antti Karttunen, <a href="/A319984/a319984.txt">Data supplement: n, a(n) computed for n = 1..100000</a>

%F For all n, A003963(a(n)) = A065338(n).

%o (PARI) A319984(n) = { my(f=factor(n)); prod(i=1, #f~, (prime(f[i, 1]%4))^f[i, 2]); };

%Y Cf. also A065338, A319714, A319985, A319986, A319987, A320114, A320115.

%K nonn,mult

%O 1,2

%A _Antti Karttunen_, Oct 06 2018