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Abstract. Knowledge about the enumeration and distribution of Boolean
functions according to their algebraic degrees is important for the theory
as well as for its applications. As of now, this knowledge is not complete: for
example, it is well-known that half of all Boolean functions have a maximal
algebraic degree. In the present paper, a formula for the number of all
Boolean functions of n variables and algebraic degree = k is derived. A direct
consequence from it is the assertion (formulated already by Claude Carlet)
that when n→∞, almost a half of all Boolean functions of n variables have
an algebraic degree = n− 1. The results obtained by this formula were used
in creating the sequence A319511 in the OEIS. The discrete probability a
random Boolean function to have a certain algebraic degree is de�ned and the
corresponding distribution is computed, for 3 ≤ n ≤ 10. Four applications
are considered: at the design and analysis of e�cient algorithms for exact
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or probabilistic computing the algebraic degree of Boolean functions; when
checking four test �les for representativeness; when creating benchmark �les
of Boolean functions.

1. Introduction. Boolean functions play an important role in coding
theory, modern cryptography, digital circuit theory, etc. [8, 4, 5, 3]. Di�erent types
of their representations are used in these areas, for example by: the vectors of
their functional values (called Truth Table (TT) vectors), algebraic normal forms
(ANFs), numerical normal forms, etc. The algebraic degree of Boolean function is
de�ned by its ANF and it is one of the most important cryptographic parameters.
When it is higher, the Boolean function(s) involved in the design of block ciphers,
pseudo-random numbers generators in stream ciphers, hash functions, etc., are
more resistant against cryptographic attacks.

Enumeration and distribution of the Boolean functions satisfying desired
cryptographic parameters take a great part of their research [7]. Knowledge about
the distribution of the Boolean functions according to their algebraic degrees is im-
portant for the theory, as well as for the design and analysis of e�cient algorithms
for computing the algebraic degree (as those proposed in [6]), for generating test
examples for such algorithms, etc. As of now, this knowledge is partial�there
are some theoretical results about the enumeration of Boolean functions of n
variables having certain algebraic degrees. A lot of them are derived by estab-
lishing relations between the TT vector's weight and the algebraic degree of the
corresponding Boolean function. In general, it is well-known that [4, 3, 6]:

• A Boolean function of n variables has an algebraic degree = n if and only if
its TT vector has an odd weight. Hence half of all such functions have an
algebraic degree = n.

• The number of a�ne Boolean functions of n variables (i. e., having algebraic
degree at most 1) is 2n+1. The TT vectors of all such functions (except both
constant functions) have weight 2n−1.

Counting of monomials of degrees at most r and the number of codewords for
Reed-Muller codes is outlined in [4, p. 38]. Further, on p. 49, Claude Carlet
notes: �When n tends to in�nity, random Boolean functions have almost surely
algebraic degrees at least n−1 since the number of Boolean functions of algebraic

degrees at most n − 2 equals 2
∑n−2

i=0 (ni) = 22n−n−1 and is negligible with respect
to the number 22n of all Boolean functions. But we shall see that the functions
of algebraic degrees n− 1 or n do not allow achieving some other characteristics



Distribution of the Boolean Functions of n Variables . . . 19

(balancedness, resiliency, . . . )�. This is one more reason to explore the whole
distribution of Boolean functions according to their algebraic degrees.

The outline of the paper is as follows. The basic notions are given in
Section 2. Section 3 starts with Theorem 1 which gives a formula for enumeration
of Boolean functions of n variables in accordance with their algebraic degrees.
This formula was used in creating the sequence A319511 [9]. The cited assertion
of Carlet follows as a direct consequence of the theorem. It is derived in a di�erent
way in Corollary 1. In Section 4, four applications are discussed: at the design and
analysis of e�cient algorithms for exact or probabilistic computing the algebraic
degree of Boolean functions; when checking four test �les (with samples of Boolean
functions) for representativeness; when creating of benchmark �les of Boolean
functions.

2. Basic notions. Let F2 = {0, 1} be the �eld of two elements with both
operations: x⊕ y (sum modulo 2, XOR) and x.y (multiplication, AND, denoted
simply by xy), for x, y ∈ F2. Fn

2 is the n-dimensional vector space over F2,

containing all 2n binary vectors. If a = (a1, a2, . . . , an) ∈ Fn
2 , then ā =

n∑
i=1

ai.2
n−i

denotes the natural number corresponding to a and ā is called a serial number of
the vector a. A (Hamming) weight of the same vector a is the natural number

wt(a) =

n∑
i=1

ai, i. e., it is the number of non-zero coordinates of a. A Boolean

function of n variables is a mapping f : Fn
2 → F2. So, if x1, x2, . . . , xn denote

the variables of f , it maps any binary input x = (x1, x2, . . . , xn) ∈ Fn
2 to a single

binary output y = f(x) ∈ F2. The set of all Boolean functions of n variables is
denoted by Bn.

Any Boolean function f ∈ Bn can be represented in an unique way by
the vector of its functional values, called a Truth Table vector. It is denoted by
TT (f) = (f0, f1, . . . f2n−1), where fi = f(ai) and ai is the i-th lexicographic vector
of Fn

2 , for i = 0, 1, . . . , 2n− 1. Since there are 2n binary outputs corresponding to
the vectors of Fn

2 , it follows that |Bn| = 22n .
The Algebraic Normal Form (ANF) is other unique representation of any

f ∈ Bn. It is a multivariate polynomial of the form

f(x1, x2, . . . , xn) =
⊕
u∈Fn

2

aū x
u .(1)

Here u = (u1, u2, . . . , un) ∈ Fn
2 , aū ∈ {0, 1}, and xu means the monomial
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xu1
1 xu2

2 . . . xun
n =

n∏
i=1

xui
i , where x0

i = 1 and x1
i = xi, for i = 1, 2, . . . , n. The

degree of the monomial xu is equal to the number of variables in the product
and it is denoted by deg(xu). Obviously, deg(xu) = wt(u). The algebraic degree

of the Boolean function f ∈ Bn is the highest degree among all monomials in
the ANF of f . It is denoted by deg(f). When the constant functions zero and
one are considered as functions of n variables, they are denoted by 0̃n and 1̃n,
correspondingly. If n = 0, then 0̃0 = 0 and 1̃0 = 1, i. e., the Boolean values 0
and 1 are considered as Boolean function of 0 variables. Usually, the degree of 0̃n
is de�ned as deg(0̃n) = −∞, but deg(1̃n) = 0, independently of the number of
the variables.

Remark 1. When f ∈ Bn is given by its TT (f), its ANF can be com-
puted either by a well-known transformation (algorithm) de�ned by a special
transformation matrix [1], or by a function called the binary M�obius transform

[3], or by a simple divide-and-conquer butter�y algorithm [4, 7], etc. All these
transformations are equivalent, and depending on the area of consideration they
are known as ANF Transform (ANFT), fast M�obius (or Moebius) Transform,

Zhegalkin Transform, Positive Polarity Reed-Muller Transform, etc. [1]. For any
f ∈ Bn there exists a unique ANF of it�as Zhegalkin's famous theorem states,
or as is shown in [3, 4]. So the ANFT is a bijection between the functions in Bn
and the set of their ANFs. Furthermore, the ANFT coincides with its inverse
transformation and so it is an involution [1, 3, 4, 7].

3. Enumeration and distribution of the Boolean functions
according to their algebraic degrees. Let d(n, k) denotes the number of
Boolean functions of f ∈ Bn such that deg(f) = k.

Theorem 1. For any integers n ≥ 0 and 0 ≤ k ≤ n, the number

d(n, k) =

{
1, if k = 0;

(2(nk) − 1).2
∑k−1

i=0 (ni), if 1 ≤ k ≤ n.
(2)

P r o o f.
a) The particular case k = 0 means that f = 1̃n = 1, where 1 is considered

as a unique monomial that contains no variables. In this case, the assertion of
the theorem is true.

b) Let 1 ≤ k ≤ n and X = {x1, x2, . . . , xn} be a set of variables. The set
of monomials in any ANF (i. e., formula of the type (1)) of n variables can be
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partitioned into two types subsets denoted by A and B. A subset of the type A
contains all monomials of degree = k and so A 6= ∅. A subset of the type B
contains all monomials of degrees less than k and the case B = ∅ is possible. We
shall enumerate all possible subsets of the type A and B, correspondingly:

1. There are

(
n

k

)
ways to choose k variables from X and to form a monomial

of degree = k. So, if M is the set of all such monomials, then |M | =(
n

k

)
. There are 2(nk) − 1 ways for at least one of them to be chosen and

to form the subset A in the ANF, since so many are the elements of the
power set of M without the empty set. In conclusion, the �rst multiplier in
formula (2) represents the number of all possible combinations of (at least
one) monomials having degree = k in the ANFs, which is the number of all
possible subsets of the type A.

2. Analogously, we have

(
n

i

)
monomials of degree = i, for i = 0, 1, . . . , k − 1.

Thus the set of all of them contains
k−1∑
i=0

(
n

i

)
monomials. Its power set

has a cardinality of 2
∑k−1

i=0 (ni) which is the number of all possible subsets
of the type B. This number includes the case B = ∅ which means that no
monomial of degree < k is chosen and so the corresponding ANFs contain
only monomials of degree = k. In conclusion, the second multiplier in
formula (2) is the number of all possible subsets of the type B.

Finally, any subset of the type A can be combined with any subset of
the type B in the formulas of the type (1), which is the reason for applying the
multiplication rule between both terms in formula (2). �

Table 1 represents the values of d(n, k) obtained by formula (2), for n =
0, 1, . . . , 5 and 0 ≤ k ≤ n.

Remark 2. For any positive natural number n, we can de�ne the relation
�equal algebraic degrees� over the set Bn as follows: arbitrary functions f, g ∈ Bn
belong to this relation i� deg(f) = deg(g). It is easy to verify that it is an
equivalence relation. Therefore this relation partitions the set Bn into n + 2
equivalence classes, each of which contains all Boolean functions of equal degrees.
The �rst of them contains only the constant zero function, and the cardinalities
of the remaining classes can be obtained by Theorem 1. Table 1 shows these
cardinalities for 0 ≤ n ≤ 5.
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Table 1. The values of d(n, k), for n = 0, 1, . . . , 5 and 0 ≤ k ≤ n

The values of d(n, k), for:
n = k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

0 1

1 1 2

2 1 6 8

3 1 14 112 128

4 1 30 2016 30720 32768

5 1 62 65472 67043328 2080374784 2147483648

More comments, relations and results about the numbers d(n, k) (for
n ≤ 10) can be seen in [9], sequence A319511. They suggest the following as-
sertion.

Corollary 1. The number d(n, n− 1) tends to
1

2
· |Bn| when n→∞.

P r o o f. Applying formula (2) for k = n − 1, we compute the limit of the ratio
between d(n, n− 1) and the number of all Boolean functions in Bn as follows:

lim
n→∞

d(n, n− 1)

|Bn|
= lim

n→∞

(2( n
n−1) − 1).2

∑n−2
i=0 (ni)

22n
= lim

n→∞

(2n − 1).22n−n−1

22n
=

lim
n→∞

22n−1 − 22n−n−1

22n
= lim

n→∞

(
1

2
− 1

2n+1

)
=

1

2
.

�

Obviously, when n grows and k becomes close to n, the values of d(n, k)
grow extremely fast. It is convenient to de�ne and use the discrete probability
p(n, k) a random Boolean function f ∈ Bn to have an algebraic degree = k,

p(n, k) =
d(n, k)

|Bn|
=

d(n, k)

22n
,

for n ≥ 0 and 0 ≤ k ≤ n. The values of p(n, k) obtained for a �xed n give the
distribution of the functions from Bn in accordance with their algebraic degrees.
Table 2 represents partially1 this distribution, for 3 ≤ n ≤ 10 and n− 3 ≤ k ≤ n.
The values of p(n, k) in it are rounded up to 10 digits after the decimal point.

4. Applications. The results obtained here have some useful applica-
tions:

1Because the remaining values are rounded to zero.
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Table 2. Partial distribution of the function from Bn according to their algebraic degrees,
for n = 3, 4, . . . , 10

The values of p(n, k), for:
n k = n− 3 k = n− 2 k = n− 1 k = n
3 0.00390625 0.0546875 0.4375 0.5

4 0.0004577637 0.0307617187 0.46875 0.5

5 0.0000152439 0.0156097412 0.484375 0.5

6 0.0000002384 0.0078122616 0.4921875 0.5

7 0.0000000019 0.0039062481 0.49609375 0.5

8 0 0.0019531250 0.498046875 0.5

9 0 0.0009765625 0.4990234375 0.5

10 0 0.0004882812 0.4995117187 0.5

1. The knowledge about the distribution of the function from Bn according to
their algebraic degrees is very useful in the design and analysis of algorithms
for e�cient computing the algebraic degree of Boolean functions. Such algo-
rithms are considered in [6, 2]. The continuations outlined in [2] (presented
at the conference CAI 2019, but still unpublished) demonstrate the bene�t
of this knowledge.

2. A fast and very simple probabilistic algorithm for fast computing the alge-
braic degree of f ∈ Bn, given by its TT (f). It can be described in short
as: �Compute the weight of TT (f). If it is an odd number, return n, else,
return n− 1.� From Theorem 1, Corollary 1 and Table 2, it follows that for
arbitrary f ∈ Bn this algorithm will return a correct output in ≈ 100% of
all such functions. In addition, the probability of �the algorithm returns a

correct output� tends to 1 when n→∞.

In the continuations of [2], we showed that if the TT (f) has a byte-wise
representation, an algorithm for computing the weight of TT (f) will have
a time complexity Θ(2n). When the TT (f) has a bitwise representation in
64 = 26-bit computer words, it occupies s = 2n−6 such words. Thus, by
using a look-up table � an array a of size 216 elements which are precomputed
weights of integers (i. e., a[i] = weight(i), for i = 0, 1, . . . , 216 − 1) � the
weight of TT (f) will be computed in Θ(4.s) = Θ(2n−4) steps. But we
realized that we need the parity check of TT (f) instead of its weight. The
parity check of TT (f) can be computed signi�cantly more e�ciently�in
Θ(s− 1 + 6) = Θ(2n−6) steps. The last comments show how fast can be the
probabilistic algorithm and what improvement to expect in the e�ciency
of exact algorithms when they use a bitwise representation of TT (f) and
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bitwise operations.

3. It is known that �With today's computation power, it is not possible to con-
duct an exhaustive search on Boolean functions of 6 variables or more� [7].
That is why the algorithms for investigation of such Boolean functions use
samples of them which should be representative. The results obtained here
were used to check four �les for representativeness. These �les contain 106,
107, 108 and 109 randomly generated unsigned integers in 64-bits computer
words. These integers were obtained by using the usual rand () function in
C/C++ programming language, without any additional checks and condi-
tions. The �les were used as test examples in [1, 2]. When Boolean functions
of n ≥ 6 variables are used, 2n−6 integers are read from the selected �le and
so they form the TT (f) (in a bitwise representation) of the serial Boolean
function. We used each of these �les as an input of Boolean functions of
n = 6, 8, 10, 12, 14, 16 variables. We computed their ANFs, thereafter the
algebraic degrees of each of these functions, and we enumerated all functions
of equal degrees. Finally, we compute the deviations � the absolute values
of the di�erences between the theoretical and computed distributions. The
obtained results are given in Table 3.

Table 3. Experimental results about the test �les representativeness�
the maximal deviations in percents

Number of Maximal deviations in % for Boolean functions of:
integers: 6 vars 8 vars 10 vars 12 vars 14 vars 16 vars

106 0.64775 0.018 0.1504 0.0922 0.8479 1.2303

107 0.62853 0.04393 0.10429 0.17216 0.29952 0.10753

108 0.623065 0.007604 0.027972 0.031936 0.003222 0.261884

109 0.623232 0.0079967 0.0099744 0.014511 0.01743 0.092923

We have to note that the two test �les of smaller sizes have been used in
the development and debugging of the algorithms in [1, 2], whereas the two
test �les of larger sizes have been used for the true tests and results. So we
consider that the algorithms work with samples of Boolean functions which
are representative enough and their results are real.

4. The recent results can be used in creating benchmarks �les containing sam-
ples of Boolean functions whose distribution (according to their algebraic
degrees) will be as close as necessary to the theoretical distribution. Thus
we can obtain signi�cantly more representative samples than those in the
test �les mentioned above.
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5. Conclusions. The main goal of this paper is to contribute knowledge
about the enumeration and distribution of Boolean functions according to their
algebraic degrees, as well as to make the knowledge of this matter more popular.
We demonstrated four applications of it as illustrations of its use. We hope this
knowledge will also �nd other applications.
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