login
A319021
Next larger integer with same sum of digits in base 3 as n.
3
3, 4, 9, 6, 7, 10, 11, 14, 27, 12, 13, 18, 15, 16, 19, 20, 23, 28, 21, 22, 29, 24, 25, 32, 35, 44, 81, 30, 31, 36, 33, 34, 37, 38, 41, 54, 39, 40, 45, 42, 43, 46, 47, 50, 55, 48, 49, 56, 51, 52, 59, 62, 71, 82, 57, 58, 63, 60, 61, 64, 65, 68, 83, 66, 67, 72
OFFSET
1,1
COMMENTS
This sequence is the base-3 variant of A057168 (base-2) and of A228915 (base-10).
All integers except those in A062318 appear in this sequence.
LINKS
FORMULA
a(3^k) = 3^(k+1) for any k >= 0.
A053735(a(n)) = A053735(n).
EXAMPLE
The first terms, alongside the ternary representations of n and of a(n), are:
n a(n) ter(n) ter(a(n))
-- ---- ------ ---------
1 3 1 10
2 4 2 11
3 9 10 100
4 6 11 20
5 7 12 21
6 10 20 101
7 11 21 102
8 14 22 112
9 27 100 1000
10 12 101 110
11 13 102 111
12 18 110 200
13 15 111 120
14 16 112 121
15 19 120 201
MATHEMATICA
nli3[n_]:=Module[{nd3=Total[IntegerDigits[n, 3]], k=n+1}, While[Total[IntegerDigits[k, 3]]!=nd3, k++]; k]; Array[nli3, 70] (* Harvey P. Dale, Jun 27 2023 *)
PROG
(PARI) a(n, base=3) = my (c=0); for (w=0, oo, my (d=n % base); if (d+1 < base && c, return ((n+1)*base^w + ((c-1)%(base-1) + 1)*base^((c-1)\(base-1))-1), c += d; n \= base))
(Python)
def a(n, base=3):
c, b, w = 0, base, 0
while True:
d = n%b
if d+1 < b and c:
return (n+1)*b**w + ((c-1)%(b-1)+1)*b**((c-1)//(b-1))-1
c += d; n //= b; w += 1
print([a(n) for n in range(1, 67)]) # Michael S. Branicky, Jul 10 2022 after Rémy Sigrist
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Rémy Sigrist, Sep 08 2018
STATUS
approved