login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of powerful uniform rooted trees with n nodes.
3

%I #10 Dec 09 2020 15:39:30

%S 1,1,2,3,5,6,11,12,19,23,35,36,63,64,98,112,173,174,291,292,473,509,

%T 791,792,1345,1356,2158,2257,3634,3635,6053,6054,9807,10091,16173,

%U 16216,26783,26784,43076,43880,70631,70632,114975,114976,184665,186996,298644,298645,481978,482011

%N Number of powerful uniform rooted trees with n nodes.

%C A powerful uniform rooted tree with n nodes is either a single powerful uniform branch with n-1 nodes, or a powerful uniform multiset (all multiplicities are equal to the same number > 1) of powerful uniform rooted trees with a total of n-1 nodes.

%H Andrew Howroyd, <a href="/A318689/b318689.txt">Table of n, a(n) for n = 1..1000</a>

%H Gus Wiseman, <a href="/A318689/a318689.png">All 35 powerful uniform rooted trees with 11 nodes.</a>

%e The a(8) = 12 powerful uniform rooted trees:

%e (((((((o)))))))

%e ((((((oo))))))

%e (((((o)(o)))))

%e ((((o))((o))))

%e (((((ooo)))))

%e (((o)(o)(o)))

%e ((((oooo))))

%e (((oo)(oo)))

%e ((oo(o)(o)))

%e (((ooooo)))

%e ((oooooo))

%e (ooooooo)

%t rurt[n_]:=If[n==1,{{}},Join@@Table[Select[Union[Sort/@Tuples[rurt/@ptn]],Or[Length[#]==1,And[Min@@Length/@Split[#]>=2,SameQ@@Length/@Split[#]]]&],{ptn,IntegerPartitions[n-1]}]];

%t Table[Length[rurt[n]],{n,15}]

%o (PARI) WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}

%o seq(n)={my(v=vector(n)); v[1]=1; for(n=1, n-1, my(u=WeighT(v[1..n])); v[n+1] = sumdiv(n,d,u[d]) - u[n] + v[n]); v} \\ _Andrew Howroyd_, Dec 09 2020

%Y Cf. A000081, A003238, A072774, A317705, A317707, A317710, A317717, A317718, A318611, A318612, A318690, A318691, A318692.

%K nonn

%O 1,3

%A _Gus Wiseman_, Aug 31 2018

%E Terms a(21) and beyond from _Andrew Howroyd_, Dec 09 2020