login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A318543 Number of nX6 0..1 arrays with every element unequal to 0, 1, 4 or 6 horizontally, vertically or antidiagonally adjacent elements, with upper left element zero. 1

%I

%S 13,15,52,207,784,2905,10496,38721,144148,531780,1960675,7241505,

%T 26745797,98766587,364682042,1346615672,4972655637,18362061797,

%U 67803976370,250374735252,924538580895,3413971260050,12606503235153

%N Number of nX6 0..1 arrays with every element unequal to 0, 1, 4 or 6 horizontally, vertically or antidiagonally adjacent elements, with upper left element zero.

%C Column 6 of A318545.

%H R. H. Hardin, <a href="/A318543/b318543.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = a(n-1) +24*a(n-3) +20*a(n-4) +96*a(n-5) +2*a(n-6) +103*a(n-7) -209*a(n-8) -11*a(n-9) -287*a(n-10) +65*a(n-11) +298*a(n-12) -154*a(n-13) +475*a(n-14) +73*a(n-15) -898*a(n-16) -83*a(n-17) +533*a(n-18) +215*a(n-19) -197*a(n-20) -209*a(n-21) +353*a(n-22) +119*a(n-23) -885*a(n-24) +190*a(n-25) +1077*a(n-26) -441*a(n-27) -760*a(n-28) +403*a(n-29) +336*a(n-30) -210*a(n-31) -91*a(n-32) +66*a(n-33) +14*a(n-34) -12*a(n-35) -a(n-36) +a(n-37) for n>38

%e Some solutions for n=5

%e ..0..0..0..0..0..0. .0..0..0..0..0..0. .0..1..0..0..0..0. .0..0..0..0..0..0

%e ..0..0..0..0..1..0. .0..0..1..0..0..0. .0..0..0..0..0..0. .0..0..0..0..0..0

%e ..0..0..0..0..0..0. .0..0..0..0..0..0. .0..0..0..0..0..0. .1..0..0..0..0..0

%e ..0..0..0..0..0..0. .0..0..0..0..0..0. .0..0..0..1..0..0. .0..0..1..0..0..1

%e ..0..0..0..0..1..0. .0..1..0..0..1..0. .0..0..0..0..0..0. .0..0..0..0..0..0

%Y Cf. A318545.

%K nonn

%O 1,1

%A _R. H. Hardin_, Aug 28 2018

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 27 13:59 EDT 2022. Contains 354896 sequences. (Running on oeis4.)