login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Denominators of the sequence whose Dirichlet convolution with itself yields A001227, number of odd divisors of n.
4

%I #11 Sep 13 2018 02:42:03

%S 1,2,1,8,1,2,1,16,1,2,1,8,1,2,1,128,1,2,1,8,1,2,1,16,1,2,1,8,1,2,1,

%T 256,1,2,1,8,1,2,1,16,1,2,1,8,1,2,1,128,1,2,1,8,1,2,1,16,1,2,1,8,1,2,

%U 1,1024,1,2,1,8,1,2,1,16,1,2,1,8,1,2,1,128,1,2,1,8,1,2,1,16,1,2,1,8,1,2,1,256,1,2,1,8,1,2,1,16,1

%N Denominators of the sequence whose Dirichlet convolution with itself yields A001227, number of odd divisors of n.

%C The sequence seems to give the denominators of several other similarly constructed "Dirichlet Square Roots".

%H Antti Karttunen, <a href="/A318454/b318454.txt">Table of n, a(n) for n = 1..16384</a>

%F a(n) = denominator of f(n), where f(1) = 1, f(n) = (1/2) * (A001227(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1.

%F a(n) = 2^A318455(n).

%t f[1] = 1; f[n_] := f[n] = 1/2 (Sum[Mod[d, 2], {d, Divisors[n]}] - Sum[f[d] f[n/d], {d, Divisors[n][[2 ;; -2]]}]);

%t Table[f[n] // Denominator, {n, 1, 105}] (* _Jean-François Alcover_, Sep 13 2018 *)

%o (PARI)

%o up_to = 16384;

%o A001227(n) = numdiv(n>>valuation(n, 2)); \\ From A001227

%o DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d<n, u[d]*u[n/d], 0)))/2); u}; \\ From A317937.

%o v318453_54 = DirSqrt(vector(up_to, n, A001227(n)));

%o A318454(n) = denominator(v318453_54[n]);

%Y Cf. A001227.

%Y Cf. A318453 (numerators), A318455.

%K nonn,frac

%O 1,2

%A _Antti Karttunen_ and _Andrew Howroyd_, Aug 29 2018