login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Numerators of the sequence whose Dirichlet convolution with itself yields A001227, number of odd divisors of n.
4

%I #11 Sep 13 2018 02:41:55

%S 1,1,1,3,1,1,1,5,1,1,1,3,1,1,1,35,1,1,1,3,1,1,1,5,1,1,1,3,1,1,1,63,1,

%T 1,1,3,1,1,1,5,1,1,1,3,1,1,1,35,1,1,1,3,1,1,1,5,1,1,1,3,1,1,1,231,1,1,

%U 1,3,1,1,1,5,1,1,1,3,1,1,1,35,1,1,1,3,1,1,1,5,1,1,1,3,1,1,1,63,1,1,1,3,1,1,1,5,1

%N Numerators of the sequence whose Dirichlet convolution with itself yields A001227, number of odd divisors of n.

%H Antti Karttunen, <a href="/A318453/b318453.txt">Table of n, a(n) for n = 1..65537</a>

%F a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A001227(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1.

%t f[1] = 1; f[n_] := f[n] = 1/2 (Sum[Mod[d, 2], {d, Divisors[n]}] - Sum[f[d] f[n/d], {d, Divisors[n][[2 ;; -2]]}]);

%t Table[f[n] // Numerator, {n, 1, 105}] (* _Jean-François Alcover_, Sep 13 2018 *)

%o (PARI)

%o up_to = 16384;

%o A001227(n) = numdiv(n>>valuation(n, 2)); \\ From A001227

%o DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d<n, u[d]*u[n/d], 0)))/2); u}; \\ From A317937.

%o v318453_54 = DirSqrt(vector(up_to, n, A001227(n)));

%o A318453(n) = numerator(v318453_54[n]);

%o A318454(n) = denominator(v318453_54[n]);

%Y Cf. A001227.

%Y Cf. A318454 (gives the denominators).

%Y Differs from A318313 for the first time at n=81, where a(81) = 1, while A318313(81) = 3.

%K nonn,frac

%O 1,4

%A _Antti Karttunen_ and _Andrew Howroyd_, Aug 29 2018