Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Dec 14 2020 01:36:51
%S 1,1,1,3,5,14,38,114,330,1054,3483,11841,41543,149520,552356,2084896,
%T 8046146,31649992,127031001,518434863,2153133594,9081863859,
%U 38909868272,169096646271,745348155211,3329032020048,15063018195100,68998386313333,319872246921326,1500013368166112
%N Number of inequivalent leaf-colorings of rooted identity trees with n nodes.
%C In a rooted identity tree, all branches directly under any given branch are different.
%C The leaves are colored after selection of the tree. Since all trees are asymmetric, the symmetry group of the leaves will be the identity group and a tree with k leaves will have Bell(k) inequivalent leaf-colorings. - _Andrew Howroyd_, Dec 10 2020
%H Andrew Howroyd, <a href="/A318227/b318227.txt">Table of n, a(n) for n = 1..200</a>
%F a(n) = Sum_{k=1..n} A055327(n,k) * A000110(k). - _Andrew Howroyd_, Dec 10 2020
%e Inequivalent representatives of the a(6) = 14 leaf-colorings:
%e (1(1(1))) ((1)((1))) (1(((1)))) ((1((1)))) (((1(1)))) (((((1)))))
%e (1(1(2))) ((1)((2))) (1(((2)))) ((1((2)))) (((1(2))))
%e (1(2(1)))
%e (1(2(2)))
%e (1(2(3)))
%t idt[n_]:=If[n==1,{{}},Join@@Table[Select[Union[Sort/@Tuples[idt/@c]],UnsameQ@@#&],{c,IntegerPartitions[n-1]}]];
%t Table[Sum[BellB[Count[tree,{},{0,Infinity}]],{tree,idt[n]}],{n,16}]
%o (PARI) \\ bell(n) is A000110(n).
%o WeighMT(u)={my(n=#u, p=x*Ser(u), vars=variables(p)); Vec(exp( sum(i=1, n, (-1)^(i-1)*substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i ))-1)}
%o bell(n)={sum(k=1, n, stirling(n,k,2))}
%o seq(n)={my(v=[y], b=vector(n,k,bell(k))); for(n=2, n, v=concat(v[1], WeighMT(v))); vector(n, k, sum(i=1, k, polcoef(v[k],i)*b[i]))} \\ _Andrew Howroyd_, Dec 10 2020
%Y Cf. A000081, A001190, A001678, A003238, A004111, A290689, A318185, A304486.
%Y Cf. A318226, A318228, A318229, A318230, A318231, A318234.
%Y Cf. A000110 (Bell numbers), A055327, A301342.
%K nonn
%O 1,4
%A _Gus Wiseman_, Aug 21 2018
%E Terms a(17) and beyond from _Andrew Howroyd_, Dec 10 2020