login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A318139 The 10-adic integer e = ...3455904677 satisfying e^2 + 1 = f, f^2 + 1 = a, a^2 + 1 = b, b^2 + 1 = c, c^2 + 1 = d, and d^2 + 1 = e. 7

%I

%S 7,7,6,4,0,9,5,5,4,3,1,8,3,9,9,9,6,0,6,9,3,8,2,0,2,2,4,6,5,3,1,0,2,4,

%T 1,4,6,3,6,7,7,8,1,9,2,0,8,9,6,5,4,4,6,9,8,7,1,4,8,1,8,8,5,3,7,8,1,1,

%U 7,2,5,3,5,0,6,9,9,4,3,0,3,5,8,6,0,9,2,2,3,5,0,5,1,6,2,1,9,1,8,7,8,3,7,8,6,2,2,2,5,4,0,5,5,9,1,1,6,4,7,6,4,2,5,6,9,7,5,1,8,6,3,6,2,7,9,3,6,8,4,6,3,8,3,8,9,2,9,7,4,8

%N The 10-adic integer e = ...3455904677 satisfying e^2 + 1 = f, f^2 + 1 = a, a^2 + 1 = b, b^2 + 1 = c, c^2 + 1 = d, and d^2 + 1 = e.

%C Data generated using MATLAB.

%H Seiichi Manyama, <a href="/A318139/b318139.txt">Table of n, a(n) for n = 0..1000</a>

%e 677^2 + 1 == 330 (mod 10^3), 330^2 + 1 == 901 (mod 10^3), 901^2 + 1 = =802 (mod 10^3), 802^2 + 1 == 205 (mod 10^3), 205^2 + 1 == 26 (mod 10^3), and 26^2 + 1 == 677(mod10^3), so 7 7 6 comprise the sequence's first three terms.

%Y Cf. A018247, A318135 (a), A318136 (b), A318137 (c), A318138 (d), A318140 (f).

%K nonn,base

%O 0,1

%A _Patrick A. Thomas_, Aug 19 2018

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 25 07:27 EDT 2021. Contains 347654 sequences. (Running on oeis4.)