login
Number of nX4 0..1 arrays with every element unequal to 1, 2, 3 or 4 horizontally, vertically or antidiagonally adjacent elements, with upper left element zero.
1

%I #4 Aug 15 2018 13:10:33

%S 2,67,649,7170,76927,829137,8929364,96178466,1035919809,11157725916,

%T 120178061288,1294418390430,13941970850679,150166708458945,

%U 1617421284514207,17420982562261441,187638580250909660

%N Number of nX4 0..1 arrays with every element unequal to 1, 2, 3 or 4 horizontally, vertically or antidiagonally adjacent elements, with upper left element zero.

%C Column 4 of A318068.

%H R. H. Hardin, <a href="/A318064/b318064.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 10*a(n-1) +19*a(n-2) -102*a(n-3) -178*a(n-4) +302*a(n-5) +901*a(n-6) +47*a(n-7) -3090*a(n-8) -1538*a(n-9) +5753*a(n-10) +4891*a(n-11) -5102*a(n-12) -3212*a(n-13) +1843*a(n-14) -6490*a(n-15) -5285*a(n-16) +19179*a(n-17) +30843*a(n-18) +13600*a(n-19) -14605*a(n-20) -29759*a(n-21) -27375*a(n-22) -19262*a(n-23) -7115*a(n-24) +21577*a(n-25) +35903*a(n-26) +13899*a(n-27) -8765*a(n-28) -10010*a(n-29) -6393*a(n-30) -2087*a(n-31) +1134*a(n-32) +1680*a(n-33) +796*a(n-34) -31*a(n-35) -149*a(n-36) -100*a(n-37) -16*a(n-38) +16*a(n-39)

%e Some solutions for n=5

%e ..0..1..1..0. .0..1..0..0. .0..0..0..1. .0..0..1..0. .0..1..0..1

%e ..0..0..1..1. .1..0..1..0. .1..1..1..1. .1..1..1..1. .1..0..0..0

%e ..1..0..0..1. .0..1..1..0. .0..0..1..0. .0..1..1..0. .1..1..1..0

%e ..1..0..1..1. .0..1..0..0. .0..0..0..0. .1..1..0..1. .0..1..1..0

%e ..1..1..1..0. .0..1..0..1. .1..1..1..1. .0..0..0..1. .0..0..1..0

%Y Cf. A318068.

%K nonn

%O 1,1

%A _R. H. Hardin_, Aug 15 2018