Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Nov 06 2018 11:41:21
%S -1,2,3,6,23,62,179,522,1503,4346,12563,36302,104919,303222,876323,
%T 2532626,7319423,21153522,61134819,176682902,510623063,1475728046,
%U 4264933203,12325885722,35622470879,102950851562,297533483123,859887725406,2485121649303,7182134864102
%N a(n) = 2*(a(n-1)+a(n-2)+a(n-3))-a(n-4) for n >= 4, with initial terms -1, 2, 3, 6.
%H Andrew Howroyd, <a href="/A317973/b317973.txt">Table of n, a(n) for n = 0..1000</a>
%H H. S. M. Coxeter, <a href="http://gdz.sub.uni-goettingen.de/dms/resolveppn/?PPN=GDZPPN002022109">Loxodromic sequences of tangent spheres</a>, Aequationes Mathematicae, 1.1-2 (1968): 104-121. See p. 112.
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,2,2,-1)
%F G.f.: (-1 + 4*x + x^2 - 2*x^3)/(1 - 2*x - 2*x^2 - 2*x^3 + x^4). - _Andrew Howroyd_, Sep 08 2018
%t LinearRecurrence[{2, 2, 2, -1}, {-1, 2, 3, 6}, 30] (* _Jean-François Alcover_, Sep 13 2018 *)
%o (PARI) Vec((-1 + 4*x + x^2 - 2*x^3)/(1 - 2*x - 2*x^2 - 2*x^3 + x^4) + O(x^40)) \\ _Andrew Howroyd_, Sep 08 2018
%K sign,easy
%O 0,2
%A _N. J. A. Sloane_, Sep 03 2018
%E Terms a(8) and beyond from _Andrew Howroyd_, Sep 08 2018