login
Number of nX5 0..1 arrays with every element unequal to 0, 1 or 3 horizontally, vertically or antidiagonally adjacent elements, with upper left element zero.
1

%I #4 Aug 06 2018 12:12:08

%S 8,11,16,14,19,30,42,67,100,160,248,401,630,1025,1615,2605,4136,6726,

%T 10725,17402,27961,45514,73224,118990,192065,312212,504293,819526,

%U 1326302,2155198,3489707,5670411,9190043,14929192,24203409,39317022

%N Number of nX5 0..1 arrays with every element unequal to 0, 1 or 3 horizontally, vertically or antidiagonally adjacent elements, with upper left element zero.

%C Column 5 of A317773.

%H R. H. Hardin, <a href="/A317770/b317770.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = a(n-1) +6*a(n-4) -4*a(n-5) +2*a(n-7) -11*a(n-8) +3*a(n-9) +9*a(n-10) -13*a(n-11) +5*a(n-12) -7*a(n-13) -24*a(n-14) +10*a(n-15) +7*a(n-16) +9*a(n-17) +17*a(n-18) -5*a(n-19) -8*a(n-20) +12*a(n-21) -a(n-22) +7*a(n-23) +3*a(n-24) -3*a(n-25) +7*a(n-26) +17*a(n-27) +4*a(n-28) -6*a(n-29) -11*a(n-30) -15*a(n-31) -7*a(n-32) -a(n-33) for n>41

%e Some solutions for n=5

%e ..0..0..0..1..1. .0..0..0..0..0. .0..0..0..0..1. .0..0..0..0..0

%e ..0..0..0..0..1. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0

%e ..0..0..0..0..0. .1..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0

%e ..0..0..0..0..0. .1..1..0..0..0. .0..0..0..0..0. .1..0..0..0..0

%e ..0..0..0..0..0. .1..1..1..0..0. .0..0..0..0..0. .1..1..0..0..0

%Y Cf. A317773.

%K nonn

%O 1,1

%A _R. H. Hardin_, Aug 06 2018