login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A317568 Number of nX4 0..1 arrays with every element unequal to 0, 1, 2, 3, 4, 6, 7 or 8 king-move adjacent elements, with upper left element zero. 1

%I

%S 8,112,997,9513,91461,869466,8305672,79320881,757097096,7228374990,

%T 69010075146,658831518867,6289887800457,60049584575415,

%U 573293198672926,5473232652201330,52252964153150244,498859156723906009

%N Number of nX4 0..1 arrays with every element unequal to 0, 1, 2, 3, 4, 6, 7 or 8 king-move adjacent elements, with upper left element zero.

%C Column 4 of A317572.

%H R. H. Hardin, <a href="/A317568/b317568.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 10*a(n-1) -3*a(n-2) +23*a(n-3) -398*a(n-4) +512*a(n-5) +477*a(n-6) -1283*a(n-7) +2929*a(n-8) -6189*a(n-9) +6867*a(n-10) +3876*a(n-11) -5635*a(n-12) +11268*a(n-13) -28105*a(n-14) -12123*a(n-15) +6723*a(n-16) +97547*a(n-17) -310312*a(n-18) +303590*a(n-19) -293681*a(n-20) -176695*a(n-21) +1248852*a(n-22) -1102244*a(n-23) +584980*a(n-24) -356076*a(n-25) -186424*a(n-26) +331852*a(n-27) -367325*a(n-28) +130933*a(n-29) +45686*a(n-30) +114156*a(n-31) +54843*a(n-32) +4836*a(n-33) -49239*a(n-34) -8456*a(n-35) -3403*a(n-36) +3151*a(n-37) +2377*a(n-38) for n>39

%e Some solutions for n=5

%e ..0..1..1..0. .0..0..0..0. .0..0..0..1. .0..0..0..1. .0..1..0..1

%e ..1..1..0..0. .0..1..0..1. .1..0..0..1. .0..0..0..1. .1..1..1..0

%e ..0..1..0..0. .0..1..1..0. .1..0..1..0. .0..0..0..1. .1..1..1..0

%e ..0..0..0..0. .1..1..1..0. .1..1..1..1. .1..1..1..0. .1..1..1..0

%e ..1..1..0..1. .0..0..0..1. .1..1..0..0. .1..1..1..0. .0..1..0..1

%Y Cf. A317572.

%K nonn

%O 1,1

%A _R. H. Hardin_, Jul 31 2018

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 21 17:13 EDT 2022. Contains 353921 sequences. (Running on oeis4.)