login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A317358 a(n) is the smallest number k > 1 such that 1^(k-1) + 2^(k-1) + ... + n^(k-1) == n (mod k). 5

%I

%S 2,3,5,2,2,7,11,2,2,3,3,2,2,17,17,2,2,3,3,2,2,23,29,2,2,5,3,2,2,31,37,

%T 2,2,37,35,2,2,3,41,2,2,43,47,2,2,3,3,2,2,5,5,2,2,3,3,2,2,59,61,2,2,

%U 67,3,2,2,55,71,2,2,35,35,2,2,3,5,2,2,5,5,2,2

%N a(n) is the smallest number k > 1 such that 1^(k-1) + 2^(k-1) + ... + n^(k-1) == n (mod k).

%C a(n) = 2 if and only if n == {0, 1} (mod 4).

%C a(n) <= A151800(n).

%C A133906(n) <= a(n) <= A133907(n).

%C The sequence is unbounded.

%C Numbers n such that a(n-1) = n are 2, 3, 7, 23, 31, 43, 59, 139, 283, ...

%C By the Agoh-Giuga conjecture, if a(n-1) = n, then n is a prime.

%C It seems that if a(n) > n, then a(n) is a prime (the next prime after n).

%C If a(n) = n, then n is in A121707. These numbers are 35, 143, 187, 215, ...

%C Conjecture: all composite terms of the sequence are A121707.

%H Chai Wah Wu, <a href="/A317358/b317358.txt">Table of n, a(n) for n = 1..10000</a> (n = 1..1000 from Seiichi Manyama)

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Agoh%E2%80%93Giuga_conjecture">Agoh-Giuga conjecture</a>

%t a[n_] := Block[{k=2}, While[Mod[Sum[PowerMod[j, k-1, k], {j, n}], k] != Mod[n, k], k++]; k]; Array[a, 81] (* _Giovanni Resta_, Jul 29 2018 *)

%o (PARI) a(n) = for(k=2,oo, if (sum(j=1,n, Mod(j,k)^(k-1)) == n, return (k));); \\ _Michel Marcus_, Jul 26 2018

%o (Python)

%o def g(n,p,q): # compute (-n + sum_{k=1,n} k^p) mod q

%o c = (-n) % q

%o for k in range(1,n+1):

%o c = (c+pow(k,p,q)) % q

%o return c

%o def A317358(n):

%o k = 2

%o while g(n,k-1,k):

%o k += 1

%o return k # _Chai Wah Wu_, Jul 30 2018

%Y Cf. A133906, A133907, A151800, A121707, A317058, A317357.

%K nonn

%O 1,1

%A _Thomas Ordowski_, Jul 26 2018

%E More terms from _Michel Marcus_, Jul 26 2018

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 18 23:41 EDT 2021. Contains 344009 sequences. (Running on oeis4.)