Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #43 Aug 20 2024 18:37:32
%S 0,1,13,3,26,5,39,7,52,9,65,11,78,13,91,15,104,17,117,19,130,21,143,
%T 23,156,25,169,27,182,29,195,31,208,33,221,35,234,37,247,39,260,41,
%U 273,43,286,45,299,47,312,49,325,51,338,53,351,55,364,57,377,59,390,61,403,63,416,65,429,67,442,69
%N Multiples of 13 and odd numbers interleaved.
%C Partial sums give the generalized 17-gonal numbers (A303305).
%C More generally, the partial sums of the sequence formed by the multiples of m and the odd numbers interleaved, give the generalized k-gonal numbers, with m >= 1 and k = m + 4.
%C a(n) is also the length of the n-th line segment of the rectangular spiral whose vertices are the generalized 17-gonal numbers.
%H Colin Barker, <a href="/A317313/b317313.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,2,0,-1).
%F a(2n) = 13*n, a(2n+1) = 2*n + 1.
%F From _Colin Barker_, Jul 29 2018: (Start)
%F G.f.: x*(1 + 13*x + x^2) / ((1 - x)^2*(1 + x)^2).
%F a(n) = 2*a(n-2) - a(n-4) for n>3. (End)
%F Multiplicative with a(2^e) = 13*2^(e-1), and a(p^e) = p^e for an odd prime p. - _Amiram Eldar_, Oct 14 2023
%F Dirichlet g.f.: zeta(s-1) * (1 + 11/2^s). - _Amiram Eldar_, Oct 25 2023
%F a(n) = (15 + 11*(-1)^n)*n/4. - _Aaron J Grech_, Aug 20 2024
%t Table[{13n, 2n + 1}, {n, 0, 35}] // Flatten (* or *)
%t CoefficientList[Series[(x^3 + 13 x^2 + x)/(x^2 - 1)^2, {x, 0, 69}], x] (* or *)
%t LinearRecurrence[{0, 2, 0, -1}, {0, 1, 13, 3}, 70] (* _Robert G. Wilson v_, Jul 26 2018 *)
%o (PARI) a(n) = if(n%2==0, return((n/2)*13), return(n)) \\ _Felix Fröhlich_, Jul 26 2018
%o (PARI) concat(0, Vec(x*(1 + 13*x + x^2) / ((1 - x)^2*(1 + x)^2) + O(x^60))) \\ _Colin Barker_, Jul 29 2018
%Y Cf. A008595 and A005408 interleaved.
%Y Column 13 of A195151.
%Y Sequences whose partial sums give the generalized k-gonal numbers: A026741 (k=5), A001477 (k=6), zero together with A080512 (k=7), A022998 (k=8), A195140 (k=9), zero together with A165998 (k=10), A195159 (k=11), A195161 (k=12), A195312 k=13), A195817 (k=14), A317311 (k=15), A317312 (k=16).
%Y Cf. A303305.
%K nonn,easy,mult
%O 0,3
%A _Omar E. Pol_, Jul 25 2018