A317203
F. M. Dekking, Delft University of Technology, F.M.Dekking@math.tudelft.nl

December 28, 2019

Proof of a close relationship between A317203 and A108103

Let $a:=\mathrm{A} 317203=3,1,3,2,3,1,3,1,3,2,3,1,3,2,3,1,3, \ldots$.
Let $\mathrm{A} 108103=1,2,1,3,1,2,1,3,1,3,1,2,1,3,1,2,1,3,1,3,1,2, \ldots$.
We have: A108103 = Fixed point of the square of the morphism: $1 \rightarrow 3,2 \rightarrow 1,3 \rightarrow 121$, starting with 1 .
The square of this morphism is $1 \rightarrow 121,2 \rightarrow 3,3 \rightarrow 313$.
Let σ be the defining morphism of A108103, but on the alphabet $\{3,2,1\}$ instead of $\{1,2,3\}$, i.e., we consider the defining morphism composed with the permutation Π given by $\Pi(1)=3, \Pi(2)=2, \Pi(3)=1$.
Then σ is given by

$$
\sigma(1)=131, \sigma(2)=1, \sigma(3)=323
$$

Let $z=32313231313231323131323 \ldots$ be the fixed point of σ starting with the letter 3 . We then have

$$
z=\Pi(\mathrm{A} 108103) .
$$

Let τ be the morphism associated to $(a(n))$, so τ is given by

$$
\tau(1)=132, \tau(2)=1, \tau(3)=3
$$

Note that $(a(n))$ is not generated by iteration of τ. However, if $y=1323131323132313132 \ldots$ is the infinite fixed point of τ starting with the letter 1 , then it is easy to see that

$$
a(n+1)=y(n) \quad \text { for all } n=1,2, \ldots
$$

We claim that sequences A317203 and A108103 are closely related:

$$
\begin{equation*}
\operatorname{A} 317203(n+1)=y(n)=z(n+3)=\Pi(\operatorname{A108103}(n+3)) \quad \text { for all } n=1,2, \ldots \tag{*}
\end{equation*}
$$

Equation $(*)$ is a consequence of the following THEOREM.
THEOREM $323 y=z$.
The theorem follows directly by letting $n \rightarrow \infty$ in the following proposition.
PROPOSITION For $n=0,1,2 \ldots$

$$
323 \tau^{2 n+1}(1)=\sigma^{n+1}(32) 32
$$

For the proof of the PROPOSITION we need LEMMA 1. We extend the concept of a word from the semigroup to the free group, so for example $3(13)^{-1}=1^{-1}$.
LEMMA 1 For $n=0,1,2 \ldots \quad \sigma^{n}(32)=321^{-1} \sigma^{n}(1)$.
Proof: Induction. True for $n=0$. Suppose true for n. Then

$$
\sigma^{n+1}(32)=\sigma^{n}(3231)=\sigma^{n}(32) \sigma^{n}(31)=321^{-1} \sigma^{n}(1) \sigma^{n}(31)=321^{-1} \sigma^{n}(131)=321^{-1} \sigma^{n+1}(1) .
$$

LEMMA 2 For $n=0,1,2 \ldots$

$$
13 \tau^{2 n+1}(1)=\sigma^{n+1}(1) 32, \text { and } \quad 323 \tau^{2 n+1}(2)=\sigma^{n+1}(3) 1
$$

Proof: Simultaneous induction. For $n=0$ we have $13 \tau(1)=13132=\sigma(1) 32$, and $323 \tau(2)=3231=\sigma(3) 1$. Suppose true for n. Then

$$
\begin{aligned}
13 \tau^{2 n+3}(1) & =13 \tau^{2 n+1}\left(\tau^{2}(1)\right) \\
& =13 \tau^{2 n+1}(13231) \\
& =13 \tau^{2 n+1}(1) \tau^{2 n+1}(3) \tau^{2 n+1}(2) \tau^{2 n+1}(3) \tau^{2 n+1}(1) \\
& =\sigma^{n+1}(1) 323 \tau^{2 n+1}(2) 3(13)^{-1} \sigma^{n+1}(1) 32 \\
& =\sigma^{n+1}(1) \sigma^{n+1}(3) 13(13)^{-1} \sigma^{n+1}(1) 32 \\
& =\sigma^{n+1}(131) 32 \\
& =\sigma^{n+2}(1) 32
\end{aligned}
$$

Also, applying LEMMA 1 in the fifth step,

$$
\begin{aligned}
323 \tau^{2 n+3}(2) & =323 \tau^{2 n+1}\left(\tau^{2}(2)\right) \\
& =323 \tau^{2 n+1}(132) \\
& =323 \tau^{2 n+1}(1) \tau^{2 n+1}(3) \tau^{2 n+1}(2) \\
& =323(13)^{-1} \sigma^{n+1}(1) 323 \tau^{2 n+1}(2) \\
& =321^{-1} \sigma^{n+1}(1) \sigma^{n+1}(3) 1 \\
& =\sigma^{n+1}(32) \sigma^{n+1}(3) 1 \\
& =\sigma^{n+1}(323) 1 \\
& =\sigma^{n+2}(3) 1
\end{aligned}
$$

This ends the proof of LEMMA 2.
Proof of the PROPOSITION:
From LEMMA 1 and LEMMA 2 we have for $n=0,1,2 \ldots$

$$
\sigma^{n+1}(32) 32=321^{-1} \sigma^{n+1}(1) 32=321^{-1} 13 \tau^{2 n+1}(1)=323 \tau^{2 n+1}(1)
$$

REMARK Since A317203(1) $=3=\Pi\left(\operatorname{A108103(3))}\right.$, Equation ($\left.{ }^{*}\right)$ also holds for $n=0$.

