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Proof of a close relationship between A317203 and A108103

Let a := A317203 = 3, 1, 3, 2, 3, 1, 3, 1, 3, 2, 3, 1, 3, 2, 3, 1, 3, . . . .

Let A108103 = 1, 2, 1, 3, 1, 2, 1, 3, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 3, 1, 2, . . . .
We have: A108103 = Fixed point of the square of the morphism: 1→ 3, 2→ 1, 3→ 121, starting with 1.
The square of this morphism is 1→ 121, 2→ 3, 3→ 313.

Let σ be the defining morphism of A108103, but on the alphabet {3, 2, 1} instead of {1, 2, 3}, i.e., we consider
the defining morphism composed with the permutation Π given by Π(1) = 3,Π(2) = 2,Π(3) = 1.
Then σ is given by

σ(1) = 131, σ(2) = 1, σ(3) = 323.

Let z = 32313231313231323131323 . . . be the fixed point of σ starting with the letter 3. We then have

z = Π(A108103).

Let τ be the morphism associated to (a(n)), so τ is given by

τ(1) = 132, τ(2) = 1, τ(3) = 3.

Note that (a(n)) is not generated by iteration of τ . However, if y = 1323131323132313132 . . . is the infinite
fixed point of τ starting with the letter 1, then it is easy to see that

a(n+ 1) = y(n) for all n = 1, 2, ...

We claim that sequences A317203 and A108103 are closely related:

A317203(n+ 1) = y(n) = z(n+ 3) = Π(A108103(n+ 3)) for all n = 1, 2, . . . . (∗)

Equation (∗) is a consequence of the following THEOREM.

THEOREM 323y = z.

The theorem follows directly by letting n→∞ in the following proposition.

PROPOSITION For n = 0, 1, 2 . . .

323τ2n+1(1) = σn+1(32)32.

For the proof of the PROPOSITION we need LEMMA 1. We extend the concept of a word from the
semigroup to the free group, so for example 3(13)−1 = 1−1.

LEMMA 1 For n = 0, 1, 2 . . . σn(32) = 321−1σn(1).

Proof: Induction. True for n = 0. Suppose true for n. Then

σn+1(32) = σn(3231) = σn(32)σn(31) = 321−1σn(1)σn(31) = 321−1σn(131) = 321−1σn+1(1). �
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LEMMA 2 For n = 0, 1, 2 . . .

13τ2n+1(1) = σn+1(1)32, and 323τ2n+1(2) = σn+1(3)1.

Proof: Simultaneous induction. For n = 0 we have 13τ(1) = 13132 = σ(1)32, and 323τ(2) = 3231 = σ(3)1.
Suppose true for n. Then

13τ2n+3(1) = 13τ2n+1(τ2(1))

= 13τ2n+1(13231)

= 13τ2n+1(1)τ2n+1(3)τ2n+1(2)τ2n+1(3)τ2n+1(1)

= σn+1(1)32 3 τ2n+1(2)3(13)−1σn+1(1)32

= σn+1(1)σn+1(3)1 3(13)−1σn+1(1)32

= σn+1(131)32

= σn+2(1)32.

Also, applying LEMMA 1 in the fifth step,

323τ2n+3(2) = 323τ2n+1(τ2(2))

= 323τ2n+1(132)

= 323τ2n+1(1)τ2n+1(3)τ2n+1(2)

= 323(13)−1σn+1(1)32 3 τ2n+1(2)

= 321−1σn+1(1)σn+1(3)1

= σn+1(32)σn+1(3)1

= σn+1(323)1

= σn+2(3)1.

This ends the proof of LEMMA 2. �

Proof of the PROPOSITION:
From LEMMA 1 and LEMMA 2 we have for n = 0, 1, 2 . . .

σn+1(32)32 = 321−1σn+1(1)32 = 321−113τ2n+1(1) = 323τ2n+1(1). �

REMARK Since A317203(1) = 3 = Π(A108103(3)), Equation (*) also holds for n = 0.
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