A317203

F. M. Dekking, Delft University of Technology, F.M.Dekking@math.tudelft.nl

December 28, 2019

Proof of a close relationship between A317203 and A108103

Let $a := A317203 = 3, 1, 3, 2, 3, 1, 3, 1, 3, 2, 3, 1, 3, 2, 3, 1, 3, \dots$

Let $A108103 = 1, 2, 1, 3, 1, 2, 1, 3, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 3, 1, 2, \dots$

We have: A108103 = Fixed point of the square of the morphism: $1 \rightarrow 3, 2 \rightarrow 1, 3 \rightarrow 121$, starting with 1. The square of this morphism is $1 \rightarrow 121, 2 \rightarrow 3, 3 \rightarrow 313$.

Let σ be the defining morphism of A108103, but on the alphabet $\{3, 2, 1\}$ instead of $\{1, 2, 3\}$, i.e., we consider the defining morphism composed with the permutation Π given by $\Pi(1) = 3, \Pi(2) = 2, \Pi(3) = 1$. Then σ is given by

$$\sigma(1) = 131, \ \sigma(2) = 1, \ \sigma(3) = 323.$$

Let z = 3231323131323131323131323... be the fixed point of σ starting with the letter 3. We then have

$$z = \Pi(A108103).$$

Let τ be the morphism associated to (a(n)), so τ is given by

$$\tau(1) = 132, \ \tau(2) = 1, \ \tau(3) = 3$$

Note that (a(n)) is not generated by iteration of τ . However, if y = 1323131323132313231323132... is the infinite fixed point of τ starting with the letter 1, then it is easy to see that

$$a(n+1) = y(n)$$
 for all $n = 1, 2, ...$

We claim that sequences A317203 and A108103 are closely related:

$$A317203(n+1) = y(n) = z(n+3) = \Pi(A108103(n+3)) \text{ for all } n = 1, 2, \dots$$

Equation (*) is a consequence of the following THEOREM.

THEOREM 323y = z.

The theorem follows directly by letting $n \to \infty$ in the following proposition.

PROPOSITION For n = 0, 1, 2...

$$323\tau^{2n+1}(1) = \sigma^{n+1}(32)32.$$

For the proof of the PROPOSITION we need LEMMA 1. We extend the concept of a word from the semigroup to the free group, so for example $3(13)^{-1} = 1^{-1}$.

LEMMA 1 For n = 0, 1, 2... $\sigma^n(32) = 321^{-1}\sigma^n(1)$.

Proof: Induction. True for n = 0. Suppose true for n. Then

$$\sigma^{n+1}(32) = \sigma^n(3231) = \sigma^n(32)\sigma^n(31) = 321^{-1}\sigma^n(1)\sigma^n(31) = 321^{-1}\sigma^n(131) = 321^{-1}\sigma^{n+1}(1). \quad \Box$$

LEMMA 2 For n = 0, 1, 2...

$$13\tau^{2n+1}(1) = \sigma^{n+1}(1)32$$
, and $323\tau^{2n+1}(2) = \sigma^{n+1}(3)1$.

Proof: Simultaneous induction. For n = 0 we have $13\tau(1) = 13132 = \sigma(1)32$, and $323\tau(2) = 3231 = \sigma(3)1$. Suppose true for n. Then

$$\begin{split} 13\tau^{2n+3}(1) &= 13\tau^{2n+1}(\tau^2(1)) \\ &= 13\tau^{2n+1}(13231) \\ &= 13\tau^{2n+1}(1)\tau^{2n+1}(3)\tau^{2n+1}(2)\tau^{2n+1}(3)\tau^{2n+1}(1) \\ &= \sigma^{n+1}(1)32\,3\,\tau^{2n+1}(2)3(13)^{-1}\sigma^{n+1}(1)32 \\ &= \sigma^{n+1}(1)\sigma^{n+1}(3)1\,3(13)^{-1}\sigma^{n+1}(1)32 \\ &= \sigma^{n+1}(131)32 \\ &= \sigma^{n+2}(1)32. \end{split}$$

Also, applying LEMMA 1 in the fifth step,

$$\begin{split} 323\tau^{2n+3}(2) &= 323\tau^{2n+1}(\tau^2(2)) \\ &= 323\tau^{2n+1}(132) \\ &= 323\tau^{2n+1}(1)\tau^{2n+1}(3)\tau^{2n+1}(2) \\ &= 323(13)^{-1}\sigma^{n+1}(1)32\,3\,\tau^{2n+1}(2) \\ &= 321^{-1}\sigma^{n+1}(1)\sigma^{n+1}(3)1 \\ &= \sigma^{n+1}(32)\sigma^{n+1}(3)1 \\ &= \sigma^{n+1}(323)1 \\ &= \sigma^{n+2}(3)1. \end{split}$$

This ends the proof of LEMMA 2. \Box

Proof of the PROPOSITION:

From LEMMA 1 and LEMMA 2 we have for n = 0, 1, 2... $\sigma^{n+1}(32)32 = 321^{-1}\sigma^{n+1}(1)32 = 321^{-1}13\tau^{2n+1}(1) = 323\tau^{2n+1}(1).$

REMARK Since $A317203(1) = 3 = \Pi(A108103(3))$, Equation (*) also holds for n = 0.