login
A morphic sequence related to the ternary Thue-Morse sequence.
0

%I #17 Oct 16 2019 06:18:58

%S 1,2,1,0,2,0,1,2,1,0,1,2,0,2,1,0,2,0,1,2,0,2,1,0,1,2,1,0,2,0,1,2,1,0,

%T 1,2,0,2,1,0,1,2,1,0,2,0,1,2,0,2,1,0,2,0,1,2,1,0,1,2,0,2,1,0,2,0,1,2,

%U 0,2,1,0,1,2,1,0,2,0,1,2,0,2,1,0,2,0,1,2,1,0,1,2,0,2,1,0,1,2,1,0,2,0,1,2,1,0

%N A morphic sequence related to the ternary Thue-Morse sequence.

%H Michaël Rao, Michel Rigo, Pavel Salimov, <a href="https://arxiv.org/abs/1310.4743">Avoiding 2-binomial squares and cubes</a>, arXiv:1310.4743 [cs.FL], 2013.

%H Michaël Rao, Michel Rigo, Pavel Salimov, <a href="https://doi.org/10.1016/j.tcs.2015.01.029">Avoiding 2-binomial squares and cubes</a>, Theoretical Computer Science, Volume 572, 23 March 2015, Pages 83-91. See proof of Lemma 1.

%F a(n) = A036577(n), n>0, a(0) = 1. - _Michel Dekking_, Oct 15 2019

%t Nest[Flatten[# /. {1 -> {2, 0}, 2 -> {1}, 0 -> {2, 1, 0}}] &, {2}, 9 (* must be an odd integer*)] (* _Robert G. Wilson v_, Jul 30 2018 *)

%Y Cf. A007413, A036577, A036580, A316826.

%K nonn

%O 0,2

%A _N. J. A. Sloane_, Jul 30 2018

%E More terms from _Robert G. Wilson v_, Jul 30 2018