login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A317133 G.f.: Sum_{n>=0} binomial(4*(n+1), n)/(n+1) * x^n / (1+x)^(n+1). 10

%I #23 Mar 23 2024 10:50:23

%S 1,3,15,85,526,3438,23358,163306,1167235,8490513,62648451,467769217,

%T 3527692298,26832220834,205601792340,1585604105312,12297768490441,

%U 95861469636203,750611119223931,5901214027721577,46564408929573723,368644188180241449,2927350250765841801,23310167641788680947,186089697960587977233,1489085453187335910243

%N G.f.: Sum_{n>=0} binomial(4*(n+1), n)/(n+1) * x^n / (1+x)^(n+1).

%C Note that: binomial(4*(n+1), n)/(n+1) = A002293(n+1) for n >= 0, where F(x) = Sum_{n>=0} A002293(n)*x^n satisfies F(x) = 1 + x*F(x)^4.

%C Compare the g.f. to:

%C (C1) M(x) = Sum_{n>=0} binomial(2*(n+1), n)/(n+1) * x^n / (1+x)^(n+1) where M(x) = 1 + M(x) + M(x)^2 is the g.f. of Motzkin numbers (A001006).

%C (C2) 1 = Sum_{n>=0} binomial(m*(n+1), n)/(n+1) * x^n / (1+x)^(m*(n+1)) holds for fixed m.

%C (C3) If S(x,p,q) = Sum_{n>=0} binomial(p*(n+1),n)/(n+1) * x^n/(1+x)^(q*(n+1)), then Series_Reversion ( x*S(x,p,q) ) = x*S(x,q,p) holds for fixed p and q.

%F G.f. A(x) satisfies:

%F (1) A(x) = (1 + x*A(x))^4 / (1+x).

%F (2) A(x) = (1/x) * Series_Reversion( x/((1+x)^4 - x) ).

%F (3) A(x) = Sum_{n>=0} binomial(4*(n+1), n)/(n+1) * x^n / (1+x)^(n+1).

%F a(n) ~ 229^(n + 3/2) / (sqrt(Pi) * 2^(7/2) * n^(3/2) * 3^(3*n + 9/2)). - _Vaclav Kotesovec_, Jul 22 2018

%F a(n) = (1/(n+1)) * Sum_{k=0..n} (-1)^k * binomial(n+1,k) * binomial(4*n-4*k+4,n-k). - _Seiichi Manyama_, Mar 23 2024

%e G.f.: A(x) = 1 + 3*x + 15*x^2 + 85*x^3 + 526*x^4 + 3438*x^5 + 23358*x^6 + 163306*x^7 + 1167235*x^8 + 8490513*x^9 + 62648451*x^10 + ...

%e such that

%e A(x) = 1/(1+x) + 4*x/(1+x)^2 + 22*x^2/(1+x)^3 + 140*x^3/(1+x)^4 + 969*x^4/(1+x)^5 + 7084*x^5/(1+x)^6 + ... + A002293(n+1)*x^n/(1+x)^(n+1) + ...

%e RELATED SERIES.

%e Series_Reversion( x*A(x) ) = x/((1+x)^4 - x) = x - 3*x^2 + 3*x^3 + 5*x^4 - 22*x^5 + 27*x^6 + 28*x^7 - 163*x^8 + 235*x^9 + 134*x^10 + ...

%e which equals the sum:

%e Sum_{n>=0} binomial(n+1, n)/(n+1) * x^(n+1)/(1+x)^(4*(n+1)).

%t Rest[CoefficientList[InverseSeries[Series[x/((1 + x)^4 - x), {x, 0, 20}], x], x]] (* _Vaclav Kotesovec_, Jul 22 2018 *)

%o (PARI) {a(n) = my(A = sum(m=0, n, binomial(4*(m+1), m)/(m+1) * x^m / (1+x +x*O(x^n))^(1*(m+1)))); polcoeff(A, n)}

%o for(n=0, 30, print1(a(n), ", "))

%o (PARI) {a(n) = my(A = (1/x) * serreverse( x/((1+x)^4 - x +x*O(x^n)) ) ); polcoeff(A, n)}

%o for(n=0, 30, print1(a(n), ", "))

%Y Cf. A316371, A127897, A317134, A349361, A349362, A349363, A349364.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Jul 21 2018

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 31 07:33 EDT 2024. Contains 375552 sequences. (Running on oeis4.)