|
|
A316966
|
|
Same as A316671, except numbering of the squares starts at 0 rather than 1.
|
|
1
|
|
|
0, 4, 3, 11, 10, 22, 21, 37, 36, 56, 55, 79, 78, 106, 105, 137, 136, 172, 171, 211, 210, 254, 253, 301, 300, 352, 351, 407, 406, 466, 465, 529, 528, 596, 595, 667, 666, 742, 741, 821, 820, 904, 903, 991, 990, 1082, 1081, 1177, 1176, 1276, 1275, 1379, 1378
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
See A316671 for further information.
|
|
LINKS
|
Daniël Karssen, Table of n, a(n) for n = 0..9999
Daniël Karssen, Figure showing the first 6 steps of the sequence
Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
|
|
FORMULA
|
a(n) = A316671(n+1) - 1.
From Colin Barker, Jul 19 2018: (Start)
G.f.: x*(4 - x + x^3) / ((1 - x)^3*(1 + x)^2).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>4. (End)
a(n) = 1 + (n + 2)*(n - (-1)^n)/2. - Bruno Berselli, Jul 19 2018
|
|
MATHEMATICA
|
Table[1 + (n + 2) (n - (-1)^n)/2, {n, 0, 60}] (* Bruno Berselli, Jul 19 2018 *)
|
|
PROG
|
(PARI) concat(0, Vec(x*(4 - x + x^3) / ((1 - x)^3*(1 + x)^2) + O(x^40))) \\ Colin Barker, Jul 19 2018
|
|
CROSSREFS
|
Cf. A316671.
Cf. A128918: it is provided by a(-n-1).
Sequence in context: A005013 A241643 A086564 * A295727 A200073 A080777
Adjacent sequences: A316963 A316964 A316965 * A316967 A316968 A316969
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Daniël Karssen, Jul 17 2018
|
|
STATUS
|
approved
|
|
|
|