login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A316818 Number of nX4 0..1 arrays with every element unequal to 0, 1, 2, 3, 4, 6 or 7 king-move adjacent elements, with upper left element zero. 1

%I

%S 8,112,983,9233,87009,811854,7609680,71307863,667818686,6256103740,

%T 58605092516,548976911503,5142570115263,48173163583227,

%U 451262766864250,4227214365189922,39598519707296438,370939944864834955

%N Number of nX4 0..1 arrays with every element unequal to 0, 1, 2, 3, 4, 6 or 7 king-move adjacent elements, with upper left element zero.

%C Column 4 of A316822.

%H R. H. Hardin, <a href="/A316818/b316818.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 10*a(n-1) -5*a(n-2) +28*a(n-3) -408*a(n-4) +542*a(n-5) +787*a(n-6) -2049*a(n-7) +2057*a(n-8) -3719*a(n-9) +6885*a(n-10) +504*a(n-11) -4666*a(n-12) +11617*a(n-13) -34519*a(n-14) +4496*a(n-15) +34989*a(n-16) +91122*a(n-17) -389039*a(n-18) +423734*a(n-19) -331342*a(n-20) -433316*a(n-21) +1590108*a(n-22) -1631316*a(n-23) +776241*a(n-24) -264053*a(n-25) -482035*a(n-26) +535407*a(n-27) -517081*a(n-28) +141983*a(n-29) +140727*a(n-30) +56125*a(n-31) +56314*a(n-32) +4504*a(n-33) -47306*a(n-34) +7194*a(n-35) +2430*a(n-36) -3159*a(n-37) +1674*a(n-38) for n>39

%e Some solutions for n=5

%e ..0..1..0..0. .0..0..1..1. .0..1..1..1. .0..0..0..1. .0..0..1..0

%e ..0..1..1..1. .0..1..1..0. .1..0..1..1. .1..1..1..0. .1..1..1..1

%e ..1..0..1..0. .0..0..0..1. .0..0..0..0. .1..1..0..1. .1..1..1..1

%e ..1..0..1..0. .0..0..1..0. .1..1..0..0. .0..1..1..1. .0..0..0..1

%e ..1..1..0..0. .1..1..0..0. .0..0..0..1. .0..0..1..0. .1..1..1..1

%Y Cf. A316822.

%K nonn

%O 1,1

%A _R. H. Hardin_, Jul 14 2018

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 27 05:50 EST 2022. Contains 350601 sequences. (Running on oeis4.)