%I #20 Jan 16 2019 04:51:38
%S 1,2,3,2,4,3,3,5,4,4,3,4,3,6,5,5,4,5,4,4,5,4,4,3,7,6,6,5,6,5,5,6,5,5,
%T 4,5,4,6,5,5,4,5,4,4,8,7,7,6,7,6,6,7,6,6,5,6,5,7,6,6,5,6,5,5,6,5,5,4,
%U 7,6,6,5,6,5,5,6,5,5,4,5,4,9,8,8,7,8,7,7,8,7,7,6,7,6,8,7,7,6,7,6,6
%N a(n) is the number of digits of A316713(n). This is the number of A, B and C sequences used in the tribonacci ABC-representation of n >= 0.
%C The number of 1's, 2's and 3's in the representation of n, given in A316713(n), is given in A316715(n), A316716(n) and A316717(n).
%H Wolfdieter Lang, <a href="https://arxiv.org/abs/1810.09787">The Tribonacci and ABC Representations of Numbers are Equivalent</a>, arXiv preprint arXiv:1810.09787 [math.NT], 2018.
%F a(n) = length(A316713(n)), n >= 0.
%F a(n) = A316715(n) + A316716(n) + A316717(n), n >= 0.
%e See A316713, the column Length(a(n)).
%Y Cf. A316713, A316715, A316716, A316717.
%K nonn,base,easy
%O 0,2
%A _Wolfdieter Lang_, Sep 11 2018