%I #27 Sep 26 2019 11:03:13
%S 1,8,6,2,12,9,4,3,13,7,5,10,26,18,11,30,24,16,38,31,22,17,25,20,28,34,
%T 14,21,43,33,27,19,15,35,42,32,23,29,39,47,56,69,37,48,40,51,60,70,57,
%U 67,81,46,58,49,41,52,44,55,64,36,65,53,45,76,63,54,66
%N Squares visited by knight moves on a diagonally numbered board and moving to the lowest available unvisited square at each step.
%C Board is numbered as follows:
%C 1 2 4 7 11 16 .
%C 3 5 8 12 17 .
%C 6 9 13 18 .
%C 10 14 19 .
%C 15 20 .
%C 21 .
%C .
%C This sequence is finite: At step 2402, square 1378 is visited, after which there are no unvisited squares within one knight move.
%H Daniël Karssen, <a href="/A316588/b316588.txt">Table of n, a(n) for n = 1..2402</a>
%H Daniël Karssen, <a href="/A316588/a316588.svg">Figure showing the complete sequence</a>
%H Daniël Karssen, <a href="/A316588/a316588.m.txt">MATLAB script to generate the complete sequence</a>
%H N. J. A. Sloane and Brady Haran, <a href="https://www.youtube.com/watch?v=RGQe8waGJ4w">The Trapped Knight</a>, Numberphile video (January, 2019)
%H Author?, <a href="https://www.youtube.com/watch?v=411keYx3KxY">Adjusting the trapped knight</a>, Youtube video, Feb 11 2019
%Y Cf. A316328, A316667, A316334, A316335.
%K nonn,fini,full,look
%O 1,2
%A _Daniël Karssen_, Jul 07 2018