login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A316282
T(n,k)=Number of nXk 0..1 arrays with every element unequal to 1, 2, 3, 4, 5 or 8 king-move adjacent elements, with upper left element zero.
7
0, 1, 1, 1, 7, 1, 2, 25, 25, 2, 3, 98, 125, 98, 3, 5, 383, 846, 846, 383, 5, 8, 1493, 5321, 9540, 5321, 1493, 8, 13, 5824, 34017, 102072, 102072, 34017, 5824, 13, 21, 22717, 216805, 1099200, 1820908, 1099200, 216805, 22717, 21, 34, 88609, 1382759
OFFSET
1,5
COMMENTS
Table starts
..0.....1.......1..........2............3..............5................8
..1.....7......25.........98..........383...........1493.............5824
..1....25.....125........846.........5321..........34017...........216805
..2....98.....846.......9540.......102072........1099200.........11834419
..3...383....5321.....102072......1820908.......32932624........594230641
..5..1493...34017....1099200.....32932624.....1000914270......30350372014
..8..5824..216805...11834419....594230641....30350372014....1545539179382
.13.22717.1382759..127394654..10728510594...920820679433...78766985363848
.21.88609.8818011.1371525369.193678113501.27936246990475.4013958393240781
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 3*a(n-1) +3*a(n-2) +2*a(n-3)
k=3: [order 9] for n>10
k=4: [order 27] for n>28
k=5: [order 95] for n>97
EXAMPLE
Some solutions for n=5 k=4
..0..1..0..1. .0..0..0..1. .0..1..0..1. .0..0..1..0. .0..0..0..1
..0..1..0..0. .1..0..1..0. .0..0..0..1. .1..1..1..1. .0..1..1..0
..1..1..0..1. .0..1..1..1. .0..1..1..0. .0..0..1..0. .1..1..0..1
..1..1..0..0. .1..0..1..0. .0..1..1..0. .0..0..0..0. .0..0..0..0
..0..0..1..0. .1..0..0..1. .1..0..1..1. .1..1..1..1. .0..1..1..0
CROSSREFS
Column 1 is A000045(n-1).
Column 2 is A304421.
Sequence in context: A306143 A317376 A304427 * A305961 A317222 A305692
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jun 28 2018
STATUS
approved