%I #4 Jun 25 2018 17:37:57
%S 2,10,34,72,331,1425,5297,18573,84658,341907,1283578,5514353,22476568,
%T 88705477,368744149,1503571517,6058762423,24862968921,101355031741,
%U 411492561255,1680909735969,6851310177747,27886986592236,113739441284254
%N Number of nX4 0..1 arrays with every element unequal to 1, 2, 4, 5, 6 or 7 king-move adjacent elements, with upper left element zero.
%C Column 4 of A316176.
%H R. H. Hardin, <a href="/A316172/b316172.txt">Table of n, a(n) for n = 1..210</a>
%H R. H. Hardin, <a href="/A316172/a316172.txt">Empirical recurrence of order 64</a>
%F Empirical recurrence of order 64 (see link above)
%e Some solutions for n=5
%e ..0..0..0..1. .0..0..0..1. .0..1..0..0. .0..1..1..0. .0..0..0..0
%e ..1..0..0..1. .0..1..1..1. .1..0..0..1. .0..0..0..0. .1..0..0..1
%e ..0..0..0..0. .0..0..0..1. .0..0..0..0. .0..0..0..0. .0..0..0..0
%e ..1..0..0..1. .1..0..1..0. .0..1..0..0. .1..0..0..1. .1..0..0..1
%e ..0..0..1..0. .0..0..0..0. .0..0..1..0. .1..0..0..0. .0..0..0..0
%Y Cf. A316176.
%K nonn
%O 1,1
%A _R. H. Hardin_, Jun 25 2018