%I
%S 4,6,18,6,6,24,6,6,48,24,12,30,18,12,18,42,24,24,18,18,42,12,12,30,24,
%T 54,36,24,12,6,12,12,30,54,12,30,18,36,60,54,54,6,12,12,18,48,6,24,6,
%U 78,30,18,42,12,156,12,72,24,12,18,66,30,30,54,24,30,48,54
%N Lucky prime gaps: differences between consecutive lucky primes.
%C Since (except for 3) all lucky primes == 1 (mod 6), a(n) >= 6 for n >= 2.  _Robert Israel_, Jul 26 2019
%H Robert Israel, <a href="/A309334/b309334.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = A031157(n+1)  A031157(n).
%e a(1) = 4 because difference between the first (3) and second (7) lucky prime is 4.
%e a(2) = 6 because difference between 7 and 13 is 6.
%p N:= 10^4: # for lucky primes up to 2*N+1
%p L:= [seq(2*i+1, i=0..N)]:
%p for n from 2 while n < nops(L) do
%p r:= L[n];
%p L:= subsop(seq(r*i=NULL, i=1..nops(L)/r), L);
%p od:
%p LP:= select(isprime,L):
%p LP[2..1]LP[1..2]; # _Robert Israel_, Jul 26 2019
%o (SageMath)
%o [A031157[i+1]A031157[i] for i in range(100)]
%Y Cf. A031157, A001223, A309333.
%K nonn
%O 1,1
%A _Hauke LĂ¶ffler_, Jul 24 2019
