%I
%S 4,47,509,5273,53047,532887,5356259,53765483,539119753,5402600081,
%T 54118210435,541947386821,5425907665571,54313871643797,
%U 543611236251491,5440228524355329,54438462600610510,544705097744731559,5449909581264135103
%N Median of primes with n decimal digits.
%C The number of ndigit primes < a(n) equals the number of ndigit primes > a(n). The median of an even number of values is understood to be defined as the arithmetic mean of the two central elements.
%F a(n) = (prime(A006880(n1) + ceiling(A006879(n)/2)) + prime(A006880(n1) + floor(A006879(n)/2) + 1)) / 2.
%e a(1) = 4 because {2, 3, 5, 7} are the 4 onedigit primes. The 2 central elements of the sorted list are 3 and 5. 4 = (3 + 5)/2.
%e a(2) = 47 because it is the central element of the sorted list of the A006879(2) = 21 twodigit primes. There are 10 such primes < 47 and 10 such primes > 47.
%Y Cf. A006879, A006880, A309359
%K nonn,base,more
%O 1,1
%A _Hugo Pfoertner_, Jul 25 2019
