The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A309047 Expansion of Product_{k>=0} (1 + x^(2^k) - x^(3*2^k)). 1

%I

%S 1,1,1,0,1,0,0,-1,1,1,0,-1,0,0,-1,-1,1,2,1,0,0,-1,-1,-1,0,1,0,0,-1,-1,

%T -1,0,1,2,2,1,1,-1,0,-1,0,0,-1,-1,-1,0,-1,0,0,1,1,1,0,-1,0,0,-1,-1,-1,

%U 0,-1,0,0,1,1,1,2,1,2,0,1,-1,1,0,-1,-2,0,1,-1,-1,0,1,0,0,-1,-1,-1,0,-1,0,0,1,-1,-1,0,1,0,0,1,1,1,0,1,0,0,-1,-1,-1,0,1

%N Expansion of Product_{k>=0} (1 + x^(2^k) - x^(3*2^k)).

%F G.f. A(x) satisfies: A(x) = (1 + x - x^3) * A(x^2).

%F a(0) = a(1) = 1; a(2*n) = a(n), a(2*n+1) = a(n) - a(n-1).

%t nmax = 109; CoefficientList[Series[Product[(1 + x^(2^k) - x^(3 2^k)), {k, 0, Floor[Log[2, nmax]] + 1}], {x, 0, nmax}], x]

%t nmax = 109; A[_] = 1; Do[A[x_] = (1 + x - x^3) A[x^2] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]

%t a[0] = 1; a[1] = 1; a[n_] := If[EvenQ[n], a[n/2], a[(n - 1)/2] - a[(n - 3)/2]]; Table[a[n], {n, 0, 109}]

%Y Cf. A002487, A005590, A120562.

%K sign

%O 0,18

%A _Ilya Gutkovskiy_, Jul 09 2019

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 24 13:43 EDT 2021. Contains 347643 sequences. (Running on oeis4.)